MATH 614 Dynamical Systems and Chaos Lecture 11: Structural stability (continued). Sharkovskii's theorem.

• Structural stability within a parametric family.

Suppose $f_{\mathbf{p}}: X_{\mathbf{p}} \to X_{\mathbf{p}}$ is a dynamical system depending on a parameter vector $\mathbf{p} \in P$, where $P \subset \mathbb{R}^k$. Given $\mathbf{p}_0 \in P$, we say that $f_{\mathbf{p}_0}$ is **structurally stable within the family** $\{f_{\mathbf{p}}\}$ if there exists $\varepsilon > 0$ such that for any $\mathbf{p} \in P$ satisfying $|\mathbf{p} - \mathbf{p}_0| < \varepsilon$ the system $f_{\mathbf{p}}$ is topologically conjugate to $f_{\mathbf{p}_0}$.

• C^r-structural stability for one-dimensional systems.

Let J be an interval of the real line. For any integer $r \ge 0$, let $C^r(J)$ denote the set of r times continuously differentiable functions $f : J \to \mathbb{R}$. The C^r distance between functions $f, g \in C^r(J)$ is given by

$$d_r(f,g) = \sup_{x \in J} (|f(x)-g(x)|, |f'(x)-g'(x)|, \dots, |f^{(r)}(x)-g^{(r)}(x)|).$$

We say that a map $f \in C^r(J)$ is C^r -structurally stable if there exists $\varepsilon > 0$ such that whenever $d_r(f,g) < \varepsilon$, it follows that g is topologically conjugate to f.

Small perturbation

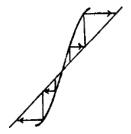


In the first figure, the function g is a C^0 -small perturbation of f, but not a C^1 -small one. In the second figure, the functions f and g are C^1 -close but not C^2 -close. In the third figure, f and g are C^2 -close.

Examples of structural stability

• Linear map $f_{\lambda} : \mathbb{R} \to \mathbb{R}$, $f_{\lambda}(x) = \lambda x$.

The map f_{λ} is structurally stable within the family $\{f_{\lambda}\}$ if and only if $\lambda \notin \{-1, 0, 1\}$. Besides, it is C^1 -structurally stable for the same values of λ .



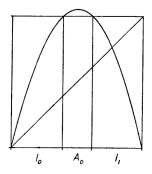
Proposition Suppose $f : [0, \infty) \to [0, \infty)$ and $g : [0, \infty) \to [0, \infty)$ are invertible continuous maps such that f(0) = g(0) = 0, f(x) > x and g(x) > x for all x > 0. Then f and g are topologically conjugate.

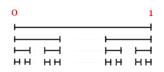
Let a, b > 0. We can construct a continuous conjugacy ϕ such that $\phi(f^n(a)) = g^n(b)$ for all n. Let U = (a, f(a)). Then U is a **wandering domain** of the map f, which means that sets $\ldots, f^{-1}(U), U, f(U), f^2(U), \ldots$ are disjoint. Similarly, V = (b, g(b)) is a wandering domain of g.

Examples of structural stability

• Logistic map
$$F_{\mu}:\mathbb{R}\to\mathbb{R},\ F_{\mu}(x)=\mu x(1-x).$$

The map F_{μ} is structurally stable within the family $\{F_{\mu}\}$ for $\mu > 4$. Besides, it is C^2 -structurally stable for $\mu > 4$ (but not C^1 -structurally stable). It is C^1 -structurally stable for $\mu > 4$ within the family of unimodal maps.





Period set

Suppose J is an interval of the real line and $f: J \to J$ is a continuous map. Let $\mathcal{P}(f)$ be the set of all natural numbers n for which the map f admits a periodic point of prime period n (or, equivalently, a periodic orbit that consists of n points).

Question. Which subsets of \mathbb{N} can occur as $\mathcal{P}(f)$?

Examples. • $f : \mathbb{R} \to \mathbb{R}, f(x) = x + 1.$ $\mathcal{P}(f) = \emptyset.$ • $f : \mathbb{R} \to \mathbb{R}, f(x) = x.$ $\mathcal{P}(f) = \{1\}.$ • $f : \mathbb{R} \to \mathbb{R}, f(x) = -x.$ $\mathcal{P}(f) = \{1, 2\}.$ • $f: \mathbb{R} \to \mathbb{R}, f(x) = \mu x(1-x)$, where $\mu > 4$. The map f has an invariant set Λ such that the restriction $f|_{\Lambda}$ is conjugate to the shift on $\Sigma_{\{0,1\}}$. Since the shift admits periodic points of all prime periods, so does $f: \mathcal{P}(f) = \mathbb{N}$.

Sharkovskii's ordering

The **Sharkovskii ordering** is the following strict linear ordering of the natural numbers:

To be precise, for any integers $k_1, k_2 \ge 0$ and odd natural numbers p_1, p_2 we let $2^{k_1}p_1 > 2^{k_2}p_2$ if and only if one of the following conditions holds:

- $k_1 = k_2$ and $1 < p_1 < p_2$;
- $p_1, p_2 > 1$ and $k_1 < k_2;$
- $p_1 > 1$ and $p_2 = 1$;
- $p_1 = p_2 = 1$ and $k_1 > k_2$.

Sharkovskii's Theorem

Theorem 1 (Sharkovskii) Suppose $f : J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. If f admits a periodic point of prime period n and $n \triangleright m$ for some $m \in \mathbb{N}$, then f admits a periodic point of prime period m as well.

Definition. A subset $E \subset \mathbb{N}$ is called a **tail** of Sharkovskii's ordering if $n \in E$ and $n \triangleright m$ implies $m \in E$ for all $m, n \in \mathbb{N}$. Sharkovskii's Theorem states that the period set $\mathcal{P}(f)$ is such a tail. For any $n \in \mathbb{N}$ the set $E_n = \{n\} \cup \{m \in \mathbb{N} \mid n \triangleright m\}$ is a tail. The only tails that cannot be represented this way are $\{2^n \mid n \ge 0\}$ and the empty set.

Theorem 2 For any tail E of Sharkovskii's ordering there exists a continuous map $f : \mathbb{R} \to \mathbb{R}$ such that $\mathcal{P}(f) = E$.

Remark. For maps of an interval $J \subset \mathbb{R}$, Theorem 2 holds with one exception: if J is bounded and closed, then $\mathcal{P}(f) \neq \emptyset$.

Suppose $f : J \to J$ is a continuous map of an interval $J \subset \mathbb{R}$. Given two closed bounded intervals $l_1, l_2 \subset J$, we write $\boxed{l_1 \to l_2}$ if $f(l_1) \supset l_2$ (i.e., if l_1 covers l_2 under the action of f).

Lemma 1 If $I \rightarrow I$, then the interval I contains a fixed point of the map f.

Proof: Let I = [a, b]. Since $f(I) \supset I$, there exist $a_0, b_0 \in I$ such that $f(a_0) = a$, $f(b_0) = b$. Then a continuous function g(x) = f(x) - x satisfies $g(a_0) = a - a_0 \leq 0$ and $g(b_0) = b - b_0 \geq 0$. By the Intermediate Value Theorem, we have g(c) = 0 for some c between a_0 and b_0 . Then $c \in I$ and f(c) = c.