## MATH 614

## Dynamical Systems and Chaos

Lecture 12:
Sharkovskii's theorem (continued).

## Sharkovskii's Theorem

The Sharkovskii ordering is the following strict linear ordering of the natural numbers:

$$
\begin{aligned}
& \begin{array}{lrrrlrrrrr} 
& 3 & \triangleright & 5 & \triangleright & 7 & \triangleright & 9 & \triangleright & \ldots \\
\triangleright & 2 \cdot 3 & \triangleright & 2 \cdot 5 & \triangleright & 2 \cdot 7 & \triangleright & 2 \cdot 9 & \triangleright & \ldots \\
& 2^{2} \cdot 3 & \triangleright & 2^{2} \cdot 5 & \triangleright & 2^{2} \cdot 7 & \triangleright & 2^{2} \cdot 9 & \triangleright & \ldots
\end{array} \\
& \ldots \triangleright 2^{k} \triangleright \ldots \triangleright 2^{3} \triangleright 2^{2} \triangleright 2 \triangleright 1 \text {. }
\end{aligned}
$$

Theorem 1 Suppose $f: J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. If $f$ admits a periodic point of prime period $n$ and $n \triangleright m$ for some $m \in \mathbb{N}$, then $f$ admits a periodic point of prime period $m$ as well.

Theorem 2 Suppose $P$ is a set of natural numbers such that $n \in P$ and $n \triangleright m$ imply $m \in P$ for all $m, n \in \mathbb{N}$. Then there exists a continuous map $f: \mathbb{R} \rightarrow \mathbb{R}$ with $P$ as the set of prime periods of its periodic points.

Suppose $f: J \rightarrow J$ is a continuous map of an interval $J \subset \mathbb{R}$. Given two closed bounded intervals $I_{1}, I_{2} \subset J$, we write and draw $I_{1} \rightarrow I_{2}$ if $f\left(I_{1}\right) \supset I_{2}\left(I_{1}\right.$ covers $I_{2}$ under action of $\left.f\right)$.

Lemma 1 If $I \rightarrow I$, then the interval $I$ contains a fixed point of the map $f$.

Lemma 2 If the map $f$ has a periodic orbit, then it has a fixed point.

Proof: Suppose $x$ is a periodic point of $f$ of prime period $n$. In the case $n=1$, we are done. Otherwise let $x_{1}, x_{2}, \ldots, x_{n}$ be the list of all points of the orbit $O_{f}^{+}(x)$ ordered so that $x_{1}<x_{2}<\cdots<x_{n}$. Note that $f\left(x_{i}\right) \neq x_{i}$ for all $i$. In particular, $f\left(x_{1}\right)>x_{1}$ while $f\left(x_{n}\right)<x_{n}$.
Let $j$ be the largest index satisfying $f\left(x_{j}\right)>x_{j}$. Then $j<n$, $f\left(x_{j}\right) \geq x_{j+1}$, and $f\left(x_{j+1}\right) \leq x_{j}$. The Intermediate Value Theorem implies that $\left[x_{j}, x_{j+1}\right] \rightarrow\left[x_{j}, x_{j+1}\right]$. By Lemma 1, the map $f$ has a fixed point in the interval $\left[x_{j}, x_{j+1}\right]$.

Lemma 3 If $I \rightarrow I^{\prime}$, then there exists a closed interval
$I_{0} \subset I$ such that $f$ maps $I_{0}$ onto $I^{\prime}$.
Proof: Let $I^{\prime}=[a, b]$. Then $A=I \cap f^{-1}(a)$ and $B=I \cap f^{-1}(b)$ are nonempty compact sets. It follows that the distance function $d(x, y)=|y-x|$ attains its minimum on the set $A \times B$ at some point $\left(x_{0}, y_{0}\right)$. Note that $x_{0} \neq y_{0}$ since $A \cap B=\emptyset$. Let $I_{0}$ denote the closed interval with endpoints $x_{0}$ and $y_{0}$. Then $I_{0} \subset I$, the endpoints of $I_{0}$ are mapped to $a$ and $b$, and no interior point of $I_{0}$ is mapped to $a$ or $b$. The Intermediate Value Theorem implies that $f\left(I_{0}\right)=I^{\prime}$.

Lemma 4 If $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n} \rightarrow I_{1}$, then there exists a fixed point $x$ of $f^{n}$ such that $x \in I_{1}, f(x) \in I_{2}, \ldots, f^{n-1}(x) \in I_{n}$.
Proof: It follows by induction from Lemma 3 that there exist closed intervals $I_{1}^{\prime} \subset I_{1}, I_{2}^{\prime} \subset I_{2}, \ldots, I_{n}^{\prime} \subset I_{n}$ such that $f$ maps $I_{i}^{\prime}$ onto $I_{i+1}^{\prime}$ for $1 \leq i \leq n-1$ and also maps $I_{n}^{\prime}$ onto $I_{1}$. As a consequence, $f^{n}$ maps $I_{1}^{\prime}$ onto $I_{1}$. Lemma 1 implies that $f^{n}$ has a fixed point $x \in I_{1}^{\prime}$. By construction, $f^{i}(x) \in I_{i}^{\prime} \subset I_{i}$ for $0 \leq i \leq n-1$.

Proposition 5 If the map $f$ has a periodic point of prime period 3, then it has periodic points of any prime period.

Proof: Suppose $x_{1}, x_{2}, x_{3}$ are points forming a periodic orbit of $f$, ordered so that $x_{1}<x_{2}<x_{3}$. We have that either $f\left(x_{1}\right)=x_{2}, f\left(x_{2}\right)=x_{3}, f\left(x_{3}\right)=x_{1}$, or else $f\left(x_{1}\right)=x_{3}$, $f\left(x_{2}\right)=x_{1}, f\left(x_{3}\right)=x_{2}$. In the first case, let $I_{1}=\left[x_{2}, x_{3}\right]$ and $I_{2}=\left[x_{1}, x_{2}\right]$. Otherwise we let $I_{1}=\left[x_{1}, x_{2}\right]$ and $I_{2}=\left[x_{2}, x_{3}\right]$. Then $\circlearrowright I_{1} \rightleftarrows I_{2}$, i.e., $I_{1} \rightarrow I_{2} \rightarrow I_{1}$ and $I_{1} \rightarrow I_{1}$.
The map $f$ has a periodic point of prime period 3. By Lemma 2, it also has a fixed point. To find a periodic point of prime period $n$, where $n=2$ or $n \geq 4$, we notice that

$$
I_{2} \rightarrow \underbrace{I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}}_{n-1 \text { times }} \rightarrow I_{2} .
$$

By Lemma 4, there exists $x \in I_{2}$ such that $f^{n}(x)=x$ and $f^{i}(x) \in I_{1}$ for $1 \leq i \leq n-1$. If $x \notin I_{1}$, we obtain that $n$ is the prime period of $x$. Otherwise $x=x_{2}$, which leads to a contradiction.

Proposition 6 If the map $f$ has a periodic point of odd prime period $n \geq 5$, then it has a periodic point of any prime period $m \triangleleft n$.
Proof: It is no loss to assume that $f$ has no periodic points of odd prime periods $p, 1<p<n$. Let $x_{1}, x_{2}, \ldots, x_{n}$ be points of a periodic orbit of prime period $n, x_{1}<x_{2}<\cdots<x_{n}$. First we show that one can choose $k \geq 2$ distinct intervals $I_{1}, I_{2}, \ldots I_{k}$ among $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]$ that satisfy


Then we show that, in fact, $k=n-1$.

First we show that one can choose $k \geq 2$ distinct intervals $I_{1}, I_{2}, \ldots I_{k}$ among $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots,\left[x_{n-1}, x_{n}\right]$ that satisfy $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k} \rightarrow I_{1}$ and $I_{1} \rightarrow I_{1}$.
Let $I_{1}=\left[x_{j}, x_{j+1}\right]$, where $j$ is the largest index satisfying $f\left(x_{j}\right)>x_{j}$. Then $f\left(x_{j}\right) \geq x_{j+1}$ and $f\left(x_{j+1}\right) \leq x_{j}$, which implies that $I_{1} \rightarrow I_{1}$.
Further, there is an interval $I_{\infty}=\left[x_{i}, x_{i+1}\right] \neq I_{1}$ such that $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$ are on different sides of $I_{1}$ so that $I_{\infty} \rightarrow I_{1}$. Indeed, otherwise $f$ would move each $x_{i}$ to the other side of $I_{1}$, which is impossible since $n$ is odd.
Next there are intervals $I_{2}, \ldots, I_{k}$ of the form $\left[x_{\ell}, x_{\ell+1}\right]$ such that $I_{1}, I_{2}, \ldots, I_{k}$ are distinct and $I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{k}=I_{\infty}$.
Clearly, $k \leq n-1$. In fact, $k=n-1$ as otherwise we would get a periodic orbit of prime period $n-2$ from the chain

$$
I_{k} \rightarrow \underbrace{I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}}_{n-k-1 \text { times }} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \cdots \rightarrow I_{k} .
$$



For any diagram of this kind, $k=n-1$.

As a consequence, $I_{s} \nrightarrow I_{t}$ if $t>s+1$ and $I_{s} \nrightarrow I_{1}$ if $1<s<n-1$. It follows that, up to the mirror image, there is only one possible ordering of the intervals $I_{1}, I_{2}, \ldots, I_{n-1}$ :


This leads to a more refined diagram of coverings:


As a consequence, $I_{s} \nrightarrow I_{t}$ if $t>s+1$ and $I_{s} \nrightarrow I_{1}$ if $1<s<n-1$. It follows that, up to the mirror image, there is only one possible ordering of the intervals $I_{1}, I_{2}, \ldots, I_{n-1}$ :


This leads to a more refined diagram of coverings: $I_{1} \rightarrow I_{1}, I_{1} \rightarrow I_{2} \rightarrow \cdots \rightarrow I_{n-1} \rightarrow I_{1}$, and $I_{n-1} \rightarrow I_{n-2 s}$.

We use this diagram and Lemma 4 to obtain a periodic orbit of $f$ of prime period $m$ for every natural number $m \triangleleft n$. Namely, in the case $m \geq n-1$ we use a chain

$$
I_{n-1} \rightarrow \underbrace{I_{1} \rightarrow I_{1} \rightarrow \cdots \rightarrow I_{1}}_{m-n+2 \text { times }} \rightarrow I_{2} \rightarrow I_{3} \rightarrow \cdots \rightarrow I_{n-1} .
$$

In the case $1<m<n-1$, the number $m$ is even, $m=2 s$, and we use a chain $I_{n-1} \rightarrow I_{n-2 s} \rightarrow I_{n-2 s+1} \rightarrow \cdots \rightarrow I_{n-1}$.

Finally, in the case $m=1$, we use the chain $I_{1} \rightarrow I_{1}$.

Lemma $72 n \triangleright 2 m$ if and only if $n \triangleright m$ for all $n, m \in \mathbb{N}$.
Lemma 8 If $x$ is a periodic point of the map $f$ of prime period $n$, then $x$ is also a periodic point of $f^{k}$ of prime period $n / \operatorname{gcd}(n, k)$.

Lemma 9 Assume that for some $n, m>1$, period $n$ implies period $m$. Then period $2 n$ implies period $2 m$.

Proof: Suppose $x$ is a periodic point of the map $f$ of prime period $2 n$. Then $x$ is a periodic point of $f^{2}$ of prime period $n$. By assumption, $f^{2}$ also has a periodic point $y$ of prime period $m$. Then $f^{2 m}(y)=\left(f^{2}\right)^{m}(y)=y$ so that $y$ is a periodic point of $f$ of prime period $\ell$, where $\ell$ divides $2 m$. By Lemma 8, $\ell=2 m$ if $\ell$ is even and $\ell=m$ if $\ell$ is odd. In the former case, we are done. In the latter case, we apply Proposition 5 or 6 .

Lemma 10 If $f$ has a periodic point of prime period 4, then it also has a periodic point of prime period 2 .

## On the converse of Sharkovskii's Theorem

Let $n \in \mathbb{N}$. Consider an arbitrary permutation $\pi$ of $\{1,2, \ldots, n\}$ that consists of a single cycle of length $n$.

We can extend $\pi$ to a continuous function $f:[1, n] \rightarrow[1, n]$ so that $f$ be linear on each of the intervals $[1,2],[2,3], \ldots,[n-1, n]$. Further, we can extend $f$ to a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ so that $f$ be constant on $(-\infty, 1]$ and on $[n, \infty)$. Then all periodic points of $f$ are in $[1, n]$.
By construction, $f$ has a periodic point of prime period $n$. One can try to pick $\pi$ so that there are no periodic points of prime periods $m \triangleright n$.

## Period 5 orbit, but no period 3 orbit

Example. $n=5, \quad \pi=(13425)$.


We obtain that $f^{3}([1,2])=[2,5], f^{3}([2,3])=[3,5]$, $f^{3}([3,4])=[1,5], f^{3}([4,5])=[1,4]$. Moreover, $f^{3}$ is strictly decreasing on $[3,4]$. Therefore $f^{3}$ has a unique fixed point, which is also a fixed point of $f$.

## Period 5 orbit, but no period 3 orbit

Example. $n=5, \quad \pi=(13425)$.


Lemma The map $f$ is expansive on the interval $[1,5]$.
Theorem The map $f$ is chaotic on the interval $[1,5]$.

