Lecture 13:

MATH 614

Dynamical Systems and Chaos

Bifurcation theory.

Bifurcation theory

The object of **bifurcation theory** is to study changes that maps undergo as parameters change.

In the context of one-dimensional dynamics, we consider a one-parameter family of maps $f_{\lambda}: \mathbb{R} \to \mathbb{R}$. We assume that $G(x,\lambda) = f_{\lambda}(x)$ is smooth a function of two variables.

Informally, the family $\{f_{\lambda}\}$ has a **bifurcation** at $\lambda=\lambda_0$ if the dynamics of f_{λ} changes as λ passes λ_0 . One way to formalize it is to require that there exist $\varepsilon>0$ such that for any $\varepsilon_1, \varepsilon_2 \in (0,\varepsilon)$ the maps $f_{\lambda_0-\varepsilon_1}$ and $f_{\lambda_0+\varepsilon_2}$ are not topologically conjugate. The simplest case is an isolated bifurcation point λ_0 . In this case, the map f_{λ} is structurally stable for all λ in a punctured neighborhood of λ_0 but not for $\lambda=\lambda_0$.

The condition of topological conjugacy is often relaxed to local topological conjugacy or to similar configuration of periodic orbits.

Saddle-node bifurcation

Exponential map $E_{\lambda}(x) = \lambda e^{x}$, $\lambda \approx 1/e$, $x \approx 1$.

For $\lambda>1/e$, there are no fixed points. At $\lambda=1/e$, there is a non-hyperbolic fixed point 1. For $0<\lambda<1/e$, there are two fixed points, one is repelling and the other one is attracting.

Saddle-node bifurcation

Exponential map $E_{\lambda}(x) = \lambda e^{x}$, $\lambda \approx 1/e$, $x \approx 1$.

Bifurcation diagram (saddle-node bifurcation)

In the plane with coordinates (λ, x) , we plot fixed points of E_{λ} for each λ :

Period doubling bifurcation

Exponential map $E_{\lambda}(x) = \lambda e^{x}$, $\lambda \approx -e$, $x \approx -1$.

For $-e < \lambda < 0$, the fixed point is attracting. At $\lambda = -e$, it is not hyperbolic. For $\lambda < -e$, the fixed point is repelling and there is also an attracting periodic orbit of period 2.

Bifurcation diagram (period doubling bifurcation)

In the plane with coordinates (λ, x) , we plot fixed points of E_{λ}^2 for each λ :

Period doubling: logistic map

Logistic map $F_{\mu}(x) = \mu x(1-x)$, $\mu \approx 3$, $x \approx 2/3$.

Consider graphs of F_{μ}^2 for $\mu \approx 3$:

For $\mu < 3$, the fixed point $p_{\mu} = 1 - \mu^{-1}$ is attracting. At $\mu = 3$, it is not hyperbolic. For $\mu > 3$, the fixed point p_{μ} is repelling and there is also an attracting periodic orbit of period 2.

No bifurcation: sufficient condition

Theorem 1 Let f_{λ} be a one-parameter family of functions and suppose that $f_{\lambda_0}(x_0) = x_0$ and $f'_{\lambda_0}(x_0) \neq 1$. Then there are open intervals $I \ni x_0$ and $N \ni \lambda_0$ and a smooth function $p: N \to I$ such that $p(\lambda_0) = x_0$ and $f_{\lambda}(p(\lambda)) = p(\lambda)$ for all $\lambda \in N$. Moreover, $p(\lambda)$ is the only fixed point of f_{λ} in I.

No bifurcation: sufficient condition

Theorem 1 Let f_{λ} be a one-parameter family of functions and suppose that $f_{\lambda_0}(x_0)=x_0$ and $f'_{\lambda_0}(x_0)\neq 1$. Then there are open intervals $I\ni x_0$ and $N\ni \lambda_0$ and a smooth function $p:N\to I$ such that $p(\lambda_0)=x_0$ and $f_{\lambda}(p(\lambda))=p(\lambda)$ for all $\lambda\in N$. Moreover, $p(\lambda)$ is the only fixed point of f_{λ} in I.

Proof: Consider a function of two variables $G(x,\lambda)=f_{\lambda}(x)-x$. We have $G(x_0,\lambda_0)=f_{\lambda_0}(x_0)-x_0=0$ and $\frac{\partial G}{\partial x}(x_0,\lambda_0)=f'_{\lambda_0}(x_0)-1\neq 0$. By the Implicit Function Theorem, there are open intervals $I\ni x_0$ and $N\ni \lambda_0$ and a smooth function $p:N\to I$ such that

$$G(x,\lambda) = 0 \iff x = p(\lambda) \text{ for all } (x,\lambda) \in I \times N.$$

Saddle-node bifurcation: sufficient condition

Theorem 2 Let f_{λ} be a one-parameter family of functions and suppose that $f_{\lambda_0}(x_0)=x_0,\ f'_{\lambda_0}(x_0)=1,\ f''_{\lambda_0}(x_0)\neq 0$, and $\frac{\partial f_{\lambda}}{\partial \lambda}\big|_{\lambda=\lambda_0}(x_0)\neq 0$. Then there are open intervals $I\ni x_0$ and $N\ni \lambda_0$ and a smooth function $p:I\to N$ such that $p(x_0)=\lambda_0$ and $f_{p(x)}(x)=x$ for all $x\in I$. Moreover, $p'(x_0)=0$ and $p''(x_0)\neq 0$.

Period doubling bifurcation: sufficient condition

Theorem 3 Let f_{λ} be a one-parameter family of functions and suppose that $f_{\lambda}(x_0) = x_0$ for all λ , $f'_{\lambda_0}(x_0) = -1$, and $\frac{\partial (f_{\lambda}^2)'}{\partial \lambda}\Big|_{\lambda=\lambda_0}(x_0) \neq 0$. Then there are open intervals $I \ni x_0$ and $N \ni \lambda_0$ and a smooth function $p: I \to N$ such that $p(x_0) = \lambda_0$ and $f^2_{p(x)}(x) = x$ for all $x \in I$ but $f_{p(x)}(x) \neq x$ for $x \in I \setminus \{x_0\}$.

More examples

• Quadratic maps: $Q_c(x) = x^2 + c$.

The family undergoes a saddle-node bifurcation at c=1/4 and a period doubling bifurcation at c=-3/4. It undergoes a lot of other bifurcations as well.

• Hyperbolic sine family: $H_{\lambda}(x) = \lambda \sinh x$.

A map H_{λ} is not structurally stable within the family for $\lambda=-1$, 0, and 1. At $\lambda=-1$, we have a period doubling bifurcation. At $\lambda=1$, the family transitions from one to three fixed points. At $\lambda=0$, the bifurcation does not change the configuration of periodic points.

• Linear maps: $f_{\lambda}(x) = \lambda^2 x$.

A map f_{λ} is not structurally stable within the family for $\lambda=-1$, 0, and 1. At $\lambda=-1$ and 1, the family transitions from a repelling fixed point to an attracting one (or vice versa). At $\lambda=0$, there is no bifurcation.