MATH 614

Dynamical Systems and Chaos
Lecture 14:
Orbit diagram for the logistic map. Topological Markov chains.

Logistic map

Logistic map $F_{\mu}(x)=\mu x(1-x)$

Period doubling: logistic map

Logistic map $F_{\mu}(x)=\mu x(1-x), \mu \approx 3, x \approx 2 / 3$.
Consider graphs of F_{μ}^{2} for $\mu \approx 3$:

For $\mu<3$, the fixed point $p_{\mu}=1-\mu^{-1}$ is attracting. At $\mu=3$, it is not hyperbolic. For $\mu>3$, the fixed point p_{μ} is repelling and there is also an attracting periodic orbit of period 2.

Period-doubling route to chaos

The logistic map F_{μ} has the period doubling bifurcation when the parameter μ passes 3 . As μ increases beyond 3 , the map undergoes repeated period doublings, namely, the period doubling bifurcation for F_{μ}^{2}, then for F_{μ}^{4}, then for F_{μ}^{8}, and so on.

Period-doubling route to chaos

The logistic map F_{μ} has the period doubling bifurcation when the parameter μ passes 3 . As μ increases beyond 3 , the map undergoes repeated period doublings, namely, the period doubling bifurcation for F_{μ}^{2}, then for F_{μ}^{4}, then for F_{μ}^{8}, and so on.

However the period doubling regime ends before μ reaches 4 when the hard chaos develops. To get more information about various kinds of bifurcations for the logistic map, we create the orbit diagram as follows. For many equally spaced values of μ, we compute the first 500 points of the orbit of $1 / 2$, then plot the last 400 of them on the (λ, x)-plane. It is known that the map F_{μ} has at most one attracting periodic orbit and that the orbit of $1 / 2$ is always attracted to it.

Orbit diagram for the logistic map

Feigenbaum's universality

For any integer $n \geq 1$ let μ_{n} be the smallest value of the parameter μ such that the logistic map $F_{\mu}(x)=\mu x(1-x)$ admits a periodic orbit of prime period n for all $\mu>\mu_{n}$.

The period-doubling bifurcations occur at $\mu=\mu_{2}, \mu_{4}, \mu_{8}, \ldots$ The limit $\mu_{\infty}=\lim _{k \rightarrow \infty} \mu_{2^{k}}$ is the smallest value of the parameter μ at which the logistic map starts showing signs of chaotic behaviour.

There exists a limit

$$
\lim _{i \rightarrow \infty} \frac{\mu_{2^{i}}-\mu_{2^{i-1}}}{\mu_{2^{i+1}}-\mu_{2^{i}}}=\delta \approx 4.6692
$$

called the Feigenbaum constant.

Feigenbaum's universality

Suppose n is an integer such that $n>1$ and n is not a power of 2 . For all $\mu>\mu_{n}$ close enough to μ_{n}, the periodic orbit of prime period n is attracting. As the value of μ increases, this orbit goes through a series of period doublings that occur at some values $\mu=\mu_{n, 2}, \mu_{n, 4}, \mu_{n, 8}, \ldots$

Moreover, the limit

$$
\lim _{i \rightarrow \infty} \frac{\mu_{n, 2^{i}}-\mu_{n, 2^{i-1}}}{\mu_{n, 2^{i+1}}-\mu_{n, 2^{i}}}
$$

exists and it is the same constant δ as above.

Renormalization

Graph of F_{μ}

Graph of F_{μ}^{2}

Subshift

Given a finite set \mathcal{A} (an alphabet), we denote by $\Sigma_{\mathcal{A}}$ the set of all infinite words over \mathcal{A}, i.e., infinite sequences $\mathbf{s}=\left(s_{1} s_{2} \ldots\right)$, $s_{i} \in \mathcal{A}$. The shift transformation $\sigma: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}}$ is defined by $\sigma\left(s_{0} s_{1} s_{2} \ldots\right)=\left(s_{1} s_{2} \ldots\right)$.

Suppose Σ^{\prime} is a closed subset of the space $\Sigma_{\mathcal{A}}$ invariant under the shift σ, i.e., $\sigma\left(\Sigma^{\prime}\right) \subset \Sigma^{\prime}$. The restriction of the shift σ to the set Σ^{\prime} is called a subshift.

Suppose W is a collection of finite words in the alphabet \mathcal{A}. Let Σ^{\prime} be the set of all $\mathbf{s} \in \Sigma_{\mathcal{A}}$ that do not contain any element of W as a subword. Then Σ^{\prime} is a closed, shift-invariant set. Any subshift can be defined this way.

In the case the set W of "forbidden" words can be chosen finite, the subshift is called a subshift of finite type. If, additionally, all forbidden words are of length 2, then the subshift is called a topological Markov chain.

Topological Markov chains

A topological Markov chain can be defined by a directed graph with the vertex set \mathcal{A} where edges correspond to allowed words of length 2.

$$
M=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

To any topological Markov chain we associate a matrix $M=\left(m_{i j}\right)$ whose rows and columns are indexed by \mathcal{A} and $m_{i j}=1$ or 0 if the word $i j$ is allowed (resp., forbidden). The matrix is actually the incidence matrix of the above graph.

Theorem If for some $n \geq 1$ all entries of the matrix M^{n} are positive, then the topological Markov chain is chaotic.

Example

For some value of μ, the point $1 / 2$ is a periodic point of period 3 for the logistic map F_{μ}. Let $I_{0}=[a, b]$ and $I_{1}=[b, c]$. The covering diagram of the intervals I_{i} gives rise to a topological Markov chain over the alphabet $\{0,1\}$.

Example

Let $I_{1}=[1,2], I_{2}=[2,3], I_{3}=[3,4]$, and
$I_{4}=[4,5]$. The covering diagram of the intervals I_{i} gives rise to a topological Markov chain over the alphabet $\{1,2,3,4\}$. Any admissible infinite word is realized as the itinerary of some point $x \in[1,5]$.

Subshifts of finite type

Theorem Any subshift of finite type is topologically conjugate to a topological Markov chain.

Example. $\mathcal{A}=\{0,1\}, W=\{00,111\}$.
Let us introduce a new alphabet

$$
\mathcal{A}^{\prime}=\{[00],[01],[10],[11]\}
$$

and an encoding $\pi: \Sigma_{\mathcal{A}} \rightarrow \Sigma_{\mathcal{A}^{\prime}}$ given by

$$
\pi\left(s_{1} s_{2} s_{3} \ldots\right)=\left(\left[s_{1} s_{2}\right]\left[s_{2} s_{3}\right]\left[s_{3} s_{4}\right] \ldots\right)
$$

For any subshift of finite type over \mathcal{A} with forbidden words of length at most 3 , this encoding provides a topological conjugacy with a topological Markov chain over \mathcal{A}^{\prime}.

