MATH 614 Dynamical Systems and Chaos Lecture 23: Hyperbolic dynamics.

Hyperbolic periodic points

Suppose $F : \mathbb{R}^n \to \mathbb{R}^n$ is a differentiable map.

Definition. A fixed point p of the map F is **hyperbolic** if the Jacobian matrix DF(p) has no eigenvalues of absolute value 1 or 0. A periodic point p of period n of the map F is **hyperbolic** if p is a hyperbolic fixed point of the map F^n .

Notice that $DF^n(p) = DF(F^{n-1}(p)) \dots DF(F(p)) DF(p)$. It follows that $DF^n(p), DF^n(F(p)), \dots, DF^n(F^{n-1}(p))$ are similar matrices. In particular, they have the same eigenvalues.

Definition. The hyperbolic periodic point p of period n is a **sink** if every eigenvalue λ of $DF^n(p)$ satisfies $0 < |\lambda| < 1$, a **source** if every eigenvalue λ satisfies $|\lambda| > 1$, and a **saddle point** otherwise.

Saddle point

The following figures show the phase portrait of a linear and a nonlinear two-dimensional maps near a saddle point.

Stable and unstable manifolds

Let $F : \mathbb{R}^2 \to \mathbb{R}^2$ be a diffeomorphism and suppose p is a saddle point of F of period m.

Theorem There exists a smooth curve $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ and $\delta > 0$ such that (i) $\gamma(0) = p$; (ii) $\gamma'(0)$ is an unstable eigenvector of $DF^m(p)$; (iii) $F^{-1}(\gamma) \subset \gamma$; (iv) $||F^{-n}(\gamma(t)) - F^{-n}(p)|| \to 0$ as $n \to \infty$. (v) if $||F^{-n}(x) - F^{-n}(p)|| < \delta$ for all $n \ge 0$, then $x = \gamma(t)$ for some t.

The curve γ is called the **local unstable manifold** of F at p. The **local stable manifold** of F at p is defined as the local unstable manifold of F^{-1} at p.

Stable and unstable manifolds

Example

In angular coordinates (θ_1, θ_2) on the torus $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$, $F\begin{pmatrix} \theta_1\\ \theta_2 \end{pmatrix} = \begin{pmatrix} \theta_1 - \varepsilon \sin \theta_1\\ \theta_2 + \varepsilon \sin \theta_2 \end{pmatrix}$.

There are 4 fixed points: one source, one sink, and two saddles.

Example

In angular coordinates (θ_1, θ_2) on the torus $\mathbb{T}^2 = (\mathbb{R}/2\pi\mathbb{Z})^2$, $F\begin{pmatrix} \theta_1\\ \theta_2 \end{pmatrix} = \begin{pmatrix} \theta_1 + \varepsilon \sin \theta_1\\ \theta_2 + \varepsilon \sin \theta_2 \cos \theta_1 \end{pmatrix}$.

There are 4 fixed points: one source, one sink, and two saddles. e=0

Hyperbolic set

Suppose $F: D \to D$ is a diffeomorphism of a domain $D \subset \mathbb{R}^k$.

Definition. A set $\Lambda \subset D$ is called a **hyperbolic set** for F if for any $x \in \Lambda$ there exists a pair of subspaces $E^s(x), E^u(x) \subset \mathbb{R}^k$ such that (i) $\mathbb{R}^k = E^s(x) \oplus E^u(x)$ for all $x \in \Lambda$; (ii) $DF(E^s(x)) = E^s(F(x))$ and $DF(E^u(x)) = E^u(F(x))$ for all $x \in \Lambda$; (iii) the subspaces $E^s(x)$ and $E^u(x)$ vary continuously with x; (iv) there is a constant $\lambda > 1$ such that $\|DF(x)\mathbf{v}\| \ge \lambda \|\mathbf{v}\|$ for all $\mathbf{v} \in E^u(x)$ and $\|DF(x)\mathbf{v}\| \le \lambda^{-1}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^s(x)$.

Hyperbolic set

Conditions (ii) and (iv) imply that $\|DF^n(x)\mathbf{v}\| \ge \lambda^n \|\mathbf{v}\|$ for all $\mathbf{v} \in E^u(x)$ and $\|DF^n(x)\mathbf{v}\| \le \lambda^{-n} \|\mathbf{v}\|$ for all $\mathbf{v} \in E^s(x)$.

Note that condition (iv) may not be preserved under changes of coordinates. We can modify it as follows:

(iv') there are constants $c, \lambda > 1$ such that $\|DF^n(x)\mathbf{v}\| \ge c^{-1}\lambda^n \|\mathbf{v}\|$ for all $\mathbf{v} \in E^u(x)$ and $\|DF^n(x)\mathbf{v}\| \le c\lambda^{-n} \|\mathbf{v}\|$ for all $\mathbf{v} \in E^s(x)$.

Stable and unstable manifolds

Let $F : \mathbb{R}^k \to \mathbb{R}^k$ be a diffeomorphism and suppose Λ is a compact invariant hyperbolic set for F. Assume that dim $E^u(x) = 1$ for all $x \in \Lambda$ (this is automatic if k = 2).

Theorem There exists $\varepsilon > 0$ and, for any $x \in \Lambda$, a smooth curve $\gamma_x : (-\varepsilon, \varepsilon) \to \mathbb{R}^2$ such that (i) $\gamma_x(0) = x$; (ii) $\gamma'_x(0) \in E^u(x) \setminus \{\mathbf{0}\}$; (iii) γ_x depends continuously on x; (iv) $F(\gamma_x) \supset \gamma_{F(x)}$; (v) $||F^{-n}(\gamma_x(t)) - F^{-n}(x)|| \to 0$ as $n \to \infty$.

The curve γ_x is called the **local unstable manifold** of F at x. In the case dim $E^u(x) = d > 1$, the theorem holds as well, with curves γ_x replaced by d-dimensional smooth manifolds. The **local stable manifold** of F at a point x is defined as the local unstable manifold of F^{-1} at x.

Examples of hyperbolic sets

• For any hyperbolic periodic point, the orbit is a hyperbolic set.

• For a hyperbolic toral automorphism, the entire torus is a hyperbolic set. Such a map is called an Anosov map; it is C^1 -structurally stable.

• For the horseshoe map, the invariant Cantor set is hyperbolic. It is an example of the so-called Axiom A map (or a Smale map). Such a map is structurally stable.

Shadowing Lemma

Suppose X is a metric space with a distance function d. Let $F: X \to X$ be a continuous transformation.

Definition. We say that a sequence $x_n, x_{n+1}, \ldots, x_m$ of elements of X is δ -shadowed by the orbit of a point $y \in X$ if $d(F^i(y), x_i) < \delta$ for $n \le i \le m$.

The sequence $x_n, x_{n+1}, \ldots, x_m$ is an ε -**pseudo-orbit** of the map F if $d(F(x_{i-1}), x_i) < \varepsilon$ for $n < i \le m$.

Theorem (Bowen) Suppose *F* is a diffeomorphism that admits an invariant hyperbolic set Λ . Then for any $\delta > 0$ there exists $\varepsilon > 0$ such that every ε -pseudo-orbit $x_n, x_{n+1}, \ldots, x_m$ of elements of Λ is δ -shadowed by the orbit of some $y \in \Lambda$.