MATH 614

Dynamical Systems and Chaos

Lecture 23: Hyperbolic dynamics.

Hyperbolic periodic points

Suppose $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a differentiable map.
Definition. A fixed point p of the map F is hyperbolic if the Jacobian matrix $D F(p)$ has no eigenvalues of absolute value 1 or 0 . A periodic point p of period n of the map F is hyperbolic if p is a hyperbolic fixed point of the map F^{n}.

Notice that $D F^{n}(p)=D F\left(F^{n-1}(p)\right) \ldots D F(F(p)) D F(p)$. It follows that $D F^{n}(p), D F^{n}(F(p)), \ldots, D F^{n}\left(F^{n-1}(p)\right)$ are similar matrices. In particular, they have the same eigenvalues.

Definition. The hyperbolic periodic point p of period n is a sink if every eigenvalue λ of $D F^{n}(p)$ satisfies $0<|\lambda|<1$, a source if every eigenvalue λ satisfies $|\lambda|>1$, and a saddle point otherwise.

Saddle point

The following figures show the phase portrait of a linear and a nonlinear two-dimensional maps near a saddle point.

Stable and unstable manifolds

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a diffeomorphism and suppose p is a saddle point of F of period m.

Theorem There exists a smooth curve $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ and $\delta>0$ such that
(i) $\gamma(0)=p$;
(ii) $\gamma^{\prime}(0)$ is an unstable eigenvector of $D F^{m}(p)$;
(iii) $F^{-1}(\gamma) \subset \gamma$;
(iv) $\left\|F^{-n}(\gamma(t))-F^{-n}(p)\right\| \rightarrow 0$ as $n \rightarrow \infty$.
(v) if $\left\|F^{-n}(x)-F^{-n}(p)\right\|<\delta$ for all $n \geq 0$, then $x=\gamma(t)$ for some t.

The curve γ is called the local unstable manifold of F at p. The local stable manifold of F at p is defined as the local unstable manifold of F^{-1} at p.

Stable and unstable manifolds

Example

In angular coordinates $\left(\theta_{1}, \theta_{2}\right)$ on the torus
$\mathbb{T}^{2}=(\mathbb{R} / 2 \pi \mathbb{Z})^{2}$,
$F\binom{\theta_{1}}{\theta_{2}}=\binom{\theta_{1}-\varepsilon \sin \theta_{1}}{\theta_{2}+\varepsilon \sin \theta_{2}}$.
There are 4 fixed points: one source, one sink, and two saddles.

Example

In angular coordinates $\left(\theta_{1}, \theta_{2}\right)$ on the torus
$\mathbb{T}^{2}=(\mathbb{R} / 2 \pi \mathbb{Z})^{2}$,
$F\binom{\theta_{1}}{\theta_{2}}=\binom{\theta_{1}+\varepsilon \sin \theta_{1}}{\theta_{2}+\varepsilon \sin \theta_{2} \cos \theta_{1}}$.
There are 4 fixed points: one source, one sink, and two saddles.

Hyperbolic set

Suppose $F: D \rightarrow D$ is a diffeomorphism of a domain $D \subset \mathbb{R}^{k}$.

Definition. A set $\Lambda \subset D$ is called a hyperbolic set for F if for any $x \in \Lambda$ there exists a pair of subspaces $E^{s}(x), E^{u}(x) \subset \mathbb{R}^{k}$ such that
(i) $\mathbb{R}^{k}=E^{s}(x) \oplus E^{u}(x)$ for all $x \in \Lambda$;
(ii) $D F\left(E^{s}(x)\right)=E^{s}(F(x))$ and $D F\left(E^{u}(x)\right)=E^{u}(F(x))$ for all $x \in \Lambda$;
(iii) the subspaces $E^{s}(x)$ and $E^{u}(x)$ vary continuously with x;
(iv) there is a constant $\lambda>1$ such that $\|D F(x) \mathbf{v}\| \geq \lambda\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{u}(x)$ and $\|D F(x) \mathbf{v}\| \leq \lambda^{-1}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{s}(x)$.

Hyperbolic set

Conditions (ii) and (iv) imply that
$\left\|D F^{n}(x) \mathbf{v}\right\| \geq \lambda^{n}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{u}(x)$ and
$\left\|D F^{n}(x) \mathbf{v}\right\| \leq \lambda^{-n}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{s}(x)$.
Note that condition (iv) may not be preserved under changes of coordinates. We can modify it as follows:
(iv') there are constants $c, \lambda>1$ such that $\left\|D F^{n}(x) \mathbf{v}\right\| \geq c^{-1} \lambda^{n}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{u}(x)$ and $\left\|D F^{n}(x) \mathbf{v}\right\| \leq c \lambda^{-n}\|\mathbf{v}\|$ for all $\mathbf{v} \in E^{s}(x)$.

Stable and unstable manifolds

Let $F: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k}$ be a diffeomorphism and suppose Λ is a compact invariant hyperbolic set for F. Assume that $\operatorname{dim} E^{u}(x)=1$ for all $x \in \Lambda$ (this is automatic if $k=2$).

Theorem There exists $\varepsilon>0$ and, for any $x \in \Lambda$, a smooth curve $\gamma_{x}:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ such that
(i) $\gamma_{x}(0)=x$;
(ii) $\gamma_{x}^{\prime}(0) \in E^{u}(x) \backslash\{\mathbf{0}\}$;
(iii) γ_{x} depends continuously on x;
(iv) $F\left(\gamma_{x}\right) \supset \gamma_{F(x)}$;
(v) $\left\|F^{-n}\left(\gamma_{x}(t)\right)-F^{-n}(x)\right\| \rightarrow 0$ as $n \rightarrow \infty$.

The curve γ_{x} is called the local unstable manifold of F at x. In the case $\operatorname{dim} E^{u}(x)=d>1$, the theorem holds as well, with curves γ_{x} replaced by d-dimensional smooth manifolds. The local stable manifold of F at a point x is defined as the local unstable manifold of F^{-1} at x.

Examples of hyperbolic sets

- For any hyperbolic periodic point, the orbit is a hyperbolic set.
- For a hyperbolic toral automorphism, the entire torus is a hyperbolic set. Such a map is called an Anosov map; it is C^{1}-structurally stable.
- For the horseshoe map, the invariant Cantor set is hyperbolic. It is an example of the so-called Axiom A map (or a Smale map). Such a map is structurally stable.

Shadowing Lemma

Suppose X is a metric space with a distance function d. Let $F: X \rightarrow X$ be a continuous transformation.

Definition. We say that a sequence $x_{n}, x_{n+1}, \ldots, x_{m}$ of elements of X is δ-shadowed by the orbit of a point $y \in X$ if $d\left(F^{i}(y), x_{i}\right)<\delta$ for $n \leq i \leq m$.
The sequence $x_{n}, x_{n+1}, \ldots, x_{m}$ is an ε-pseudo-orbit of the map F if $d\left(F\left(x_{i-1}\right), x_{i}\right)<\varepsilon$ for $n<i \leq m$.

Theorem (Bowen) Suppose F is a diffeomorphism that admits an invariant hyperbolic set Λ. Then for any $\delta>0$ there exists $\varepsilon>0$ such that every ε-pseudo-orbit $x_{n}, x_{n+1}, \ldots, x_{m}$ of elements of Λ is δ-shadowed by the orbit of some $y \in \Lambda$.

