MATH 614

Dynamical Systems and Chaos
Lecture 24:
Bifurcation theory in higher dimensions. The Hopf bifurcation.

Bifurcation theory

The object of bifurcation theory is to study changes that maps undergo as parameters change.
In the context of higher-dimensional dynamics, we consider a one-parameter family of maps $F_{\lambda}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. We assume that $G(\mathbf{x}, \lambda)=F_{\lambda}(\mathbf{x})$ is a smooth function of $n+1$ variables.
We say that the family $\left\{F_{\lambda}\right\}$ undergoes a bifurcation at $\lambda=\lambda_{0}$ if the configuration of periodic points (or, more generally, invariant sets) of F_{λ} changes as λ passes λ_{0}.
The simplest examples of bifurcations in higher dimensions occur when we consider a family of the form

$$
F_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(f_{1, \lambda}\left(x_{1}\right), f_{2, \lambda}\left(x_{2}\right), \ldots, f_{n, \lambda}\left(x_{n}\right)\right)
$$

that is, the Cartesian product of n one-dimensional families, when one of those families undergoes a bifurcation at $\lambda=\lambda_{0}$.

Saddle-node bifurcation

Example. $F_{\lambda}(x, y)=\left(f_{\lambda}(x), g_{\lambda}(y)\right)$, where $f_{\lambda}(x)=e^{x}-\lambda, \quad g_{\lambda}(y)=\frac{1}{2} \lambda \arctan y$.
The family f_{λ} undergoes a saddle-node bifurcation at $\lambda=1$.

The figures show phase portraits of maps F_{λ} near $\lambda=1$.

Period doubling bifurcation

Example. $F_{\lambda}(x, y)=\left(f_{\lambda}(x), h_{\lambda}(y)\right)$, where $f_{\lambda}(x)=e^{x}-\lambda, \quad h_{\lambda}(y)=-\frac{1}{2} \lambda \arctan y$.
The family h_{λ} undergoes a period doubling bifurcation at $\lambda=2$.

The figures show phase portraits of maps F_{λ}^{2} near $\lambda=2$.

Hyperbolic fixed points

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map. We denote by $D F(\mathbf{x})$ the Jacobian matrix of the map F at \mathbf{x}. It is an $n \times n$ matrix whose entries are partial derivatives of F at \mathbf{x}.

Definition. A fixed point \mathbf{x}_{0} of the map F is called hyperbolic if the Jacobian matrix $\operatorname{DF}\left(\mathrm{x}_{0}\right)$ is hyperbolic, that is, if it has no eigenvalues of absolute value 1 or 0 .

Theorem (Grobman-Hartman) If the fixed point x_{0} of the map F is hyperbolic, then in a neighborhood of \mathbf{x}_{0} the map F is topologically conjugate to a linear map $G(\mathbf{x})=A \mathbf{x}$, where $A=D F\left(\mathbf{x}_{0}\right)$.

As a consequence, a family of maps F_{λ} fixing a point \mathbf{x}_{0} can undergo a bifurcation at $\lambda=\lambda_{0}$ in a neighborhood of \mathbf{x}_{0} only if the fixed point \mathbf{x}_{0} is not hyperbolic for $F_{\lambda_{0}}$.

Example

In polar coordinates (r, θ),
$F_{\lambda}(r, \theta)=\left(r_{1}, \theta_{1}\right)$, where $r_{1}=\lambda r, \quad \theta_{1}=\theta+\alpha$.

The maps $F_{\lambda}, \lambda>0$ are linear, with complex conjugate eigenvalues $\lambda e^{ \pm i \alpha}$. The origin is a fixed point. It changes from an attracting to a repelling one as λ passes 1 .

Example

$$
\begin{aligned}
& F_{\lambda}(r, \theta)=\left(r_{1}, \theta_{1}\right), \text { where } r_{1}=\lambda r+\beta r^{3}(\beta<0) \\
& \theta_{1}=\theta+\alpha
\end{aligned}
$$

The origin is a fixed point, which is attracting for $0<\lambda<1$. For $\lambda>1$, the origin is repelling and there is also an invariant circle $r=\sqrt{(1-\lambda) / \beta}$, which is an attractor.

Hopf bifurcation

The Hopf bifurcation occurs when a fixed point spawns an invariant (hyperbolic) cycle in transition between attracting and repelling behaviour. The Hopf bifurcation is supercritical if an attracting fixed point gives rise to an attracting cycle and subcritical if a repelling fixed point gives rise to a repelling cycle.

More examples

- $F_{\lambda}(r, \theta)=\left(r_{1}, \theta_{1}\right)$, where $r_{1}=\lambda r+\beta r^{3}$, $\theta_{1}=\theta+\alpha+\gamma r^{2}$.
The restriction of F_{λ} to the invariant circle $r=\sqrt{(1-\lambda) / \beta}$ is a rotation. The angle of rotation depends on λ.
- $F_{\lambda}(r, \theta)=\left(r_{1}, \theta_{1}\right)$, where $r_{1}=\lambda r+\beta r^{3}$, $\theta_{1}=\theta+\alpha+\varepsilon \sin (k \theta)$.
The restriction of F_{λ} to the invariant circle $r=\sqrt{(1-\lambda) / \beta}$ is a standard map.

Hopf bifurcation in dimension 3

Normal form

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a smooth map fixing the origin and consider it as a transformation of \mathbb{C}.
Theorem Suppose $F(z)=\mu z+O\left(|z|^{2}\right)$ as $z \rightarrow 0$, where $|\mu|=1$ and $\mu^{k} \neq 1$ for any integer $k, 1 \leq k \leq 5$. Then there exist neighborhoods U, W of 0 and a (real)
diffeomorphism $L: U \rightarrow W$ such that
$L^{-1} \circ F \circ L=\mu z+\beta z^{2} \bar{z}+O\left(|z|^{5}\right)$ as $z \rightarrow 0$.
The map $L^{-1} \circ F \circ L$ is called the normal form of the map F at 0 . The number β is called the first Lyapunov coefficient of F at 0 .

More generally, if $\mu^{k} \neq 1$ for any integer $k, 1 \leq k \leq 2 \ell+3$, then the diffeomorphism L can be chosen so that
$L^{-1} \circ F \circ L=\mu z+\beta_{1}|z|^{2} z+\beta_{2}|z|^{4} z+\cdots+\beta_{\ell}|z|^{2 \ell} z+O\left(|z|^{2 \ell+3}\right)$ as $z \rightarrow 0$. The numbers $\beta_{1}, \beta_{2}, \ldots$ are called Lyapunov coefficients of F at 0 .

Hopf bifurcation: sufficient condition

Theorem Suppose $F_{\lambda}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a smooth family of maps satisfying the following conditions:

- $F_{\lambda}(0)=0$;
- $D F_{\lambda}$ has complex conjugate eigenvalues $\mu(\lambda), \overline{\mu(\lambda)}$;
- $|\mu(0)|=1$ and $(\mu(0))^{k} \neq 1$ for any integer $k, 1 \leq k \leq 5$;
- $\frac{d}{d \lambda}|\mu(\lambda)|>0$ at $\lambda=0$;
- the first Lyapunov coefficient of F_{0} at $\mathbf{0}$ satisfies $\beta<0$.

Then there exist a neighborhood U of the origin, $\varepsilon>0$, and a smooth closed curve ζ_{λ} defined for $0<\lambda<\varepsilon$ such that (i) $F_{\lambda}\left(\zeta_{\lambda}\right)=\zeta_{\lambda}$, (ii) the curve ζ_{λ} is attracting for the map F_{λ} in $U_{\text {; }}$ (iii) in polar coordinates (r, θ), the curve ζ_{λ} is given by an equation $r=r_{\lambda}(\theta)$; (iv) $r_{\lambda} \rightarrow 0$ and $r_{\lambda}^{\prime} \rightarrow 0$ uniformly as $\lambda \rightarrow 0$.

Remark. For the subcritical Hopf bifurcation, the last two conditions should be $\frac{d}{d \lambda}|\mu(\lambda)|<0$ at $\lambda=0$ and $\beta>0$.

