MATH 614 Dynamical Systems and Chaos Lecture 25: Chain recurrence.

Chain recurrence

Suppose X is a metric space with a distance function d. Let $F: X \to X$ be a continuous transformation.

Definition. A point $x \in X$ is **recurrent** for the map F if for any $\varepsilon > 0$ there is an integer n > 0 such that $d(F^n(x), x) < \varepsilon$. The point x is **chain recurrent** for F if, for any $\varepsilon > 0$, there are points $x_0 = x, x_1, x_2, \ldots, x_k = x$ and positive integers n_1, n_2, \ldots, n_k such that $d(F^{n_i}(x_{i-1}), x_i) < \varepsilon$ for $1 \le i \le k$.

A sequence x_0, x_1, \ldots, x_k is called an ε -**pseudo-orbit** of the map F if $d(F(x_{i-1}), x_i) < \varepsilon$ for $1 \le i \le k$. The point $x \in X$ is chain recurrent for F if, for any $\varepsilon > 0$, there exists an ε -pseudo-orbit x_0, x_1, \ldots, x_k with $x_0 = x_k = x$.

Chain recurrence: properties

• Any periodic point is recurrent.

• Any eventually periodic (but not periodic) point is not recurrent.

• If a point $x \in X$ is chain recurrent under a map $f: X \to X$, then so is F(x).

• Any limit point of any orbit $x, F(x), F^2(x), \ldots$ is chain recurrent. In the case F is invertible, any limit point of any backward orbit $x, F^{-1}(x), F^{-2}(x), \ldots$ is chain recurrent.

• If the orbit of x is dense in X, then x is recurrent unless x is an isolated point in X and not periodic for F.

• The set of all chain recurrent points is closed.

• For a topologically transitive map, all points are chain recurrent.

• Topological conjugacy preserves recurrence and chain recurrence.

• If $x \in W^{s}(p)$ for a periodic point p, then x is not recurrent unless x = p.

• If $X = S^1$ and F is a rotation then every point is recurrent (since either all points are periodic or all orbits are dense).

• If X is the torus \mathbb{T}^n and F is a translation then every point is recurrent (since F preserves distances and volume).

• If $X = \Sigma_A$ and $F = \sigma$ is the one-sided shift, then every point $\mathbf{s} \in X$ is chain recurrent. Indeed, let $\mathbf{s}^{(n)} = w_n w_n w_n \dots$, where w_n is the beginning of \mathbf{s} of length n. Then $\sigma^n(\mathbf{s}^{(n)}) = \mathbf{s}^{(n)}$ and $\mathbf{s}^{(n)} \to \mathbf{s}$ as $n \to \infty$.

• If $X = \Sigma_A$ and $F = \sigma$ is the one-sided shift, then not every point is recurrent. For example, $\mathbf{s} = (1000...)$ is not recurrent.

• If $X = \Sigma_{\mathcal{A}}^{\pm}$ and $F = \sigma$ is the two-sided shift, then every point is chain recurrent but not every point is recurrent, e.g., $\mathbf{s} = (\dots 000.1000 \dots)$.

Let $F : X \to X$ be a homeomorphism of a metric space X.

Definition. Suppose $x \in W^{s}(p) \cap W^{u}(q)$, where p and q are periodic points of F. Then x is called **heteroclinic** if $p \neq q$ and **homoclinic** if p = q.

• Any homoclinic point is chain recurrent.

• If $X = \mathbb{T}^2$ and F is a hyperbolic toral automorphism, then all points of X are chain recurrent (periodic points of F are dense and so are homoclinic points for the fixed point [0,0]).

• If F is the logistic map $F(x) = \mu x(1-x)$, $\mu > 4$, then chain recurrent points are all points of the invariant Cantor set.

• If F is the solenoid map, then chain recurrent points are all points of the solenoid.

• If F is the horseshoe map, then chain recurrent points are the attracting fixed point and all points of the invariant Cantor set.