MATH 614

Dynamical Systems and Chaos

Lecture 25:
 Chain recurrence.

Chain recurrence

Suppose X is a metric space with a distance function d. Let $F: X \rightarrow X$ be a continuous transformation.

Definition. A point $x \in X$ is recurrent for the map F if for any $\varepsilon>0$ there is an integer $n>0$ such that $d\left(F^{n}(x), x\right)<\varepsilon$. The point x is chain recurrent for F if, for any $\varepsilon>0$, there are points $x_{0}=x, x_{1}, x_{2}, \ldots, x_{k}=x$ and positive integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $d\left(F^{n_{i}}\left(x_{i-1}\right), x_{i}\right)<\varepsilon$ for $1 \leq i \leq k$.

A sequence $x_{0}, x_{1}, \ldots, x_{k}$ is called an ε-pseudo-orbit of the map F if $d\left(F\left(x_{i-1}\right), x_{i}\right)<\varepsilon$ for $1 \leq i \leq k$. The point $x \in X$ is chain recurrent for F if, for any $\varepsilon>0$, there exists an ε-pseudo-orbit $x_{0}, x_{1}, \ldots, x_{k}$ with $x_{0}=x_{k}=x$.

Chain recurrence: properties

- Any periodic point is recurrent.
- Any eventually periodic (but not periodic) point is not recurrent.
- If a point $x \in X$ is chain recurrent under a map $f: X \rightarrow X$, then so is $F(x)$.
- Any limit point of any orbit $x, F(x), F^{2}(x), \ldots$ is chain recurrent. In the case F is invertible, any limit point of any backward orbit $x, F^{-1}(x), F^{-2}(x), \ldots$ is chain recurrent.
- If the orbit of x is dense in X, then x is recurrent unless x is an isolated point in X and not periodic for F.
- The set of all chain recurrent points is closed.
- For a topologically transitive map, all points are chain recurrent.
- Topological conjugacy preserves recurrence and chain recurrence.
- If $x \in W^{s}(p)$ for a periodic point p, then x is not recurrent unless $x=p$.
- If $X=S^{1}$ and F is a rotation then every point is recurrent (since either all points are periodic or all orbits are dense).
- If X is the torus \mathbb{T}^{n} and F is a translation then every point is recurrent (since F preserves distances and volume).
- If $X=\Sigma_{\mathcal{A}}$ and $F=\sigma$ is the one-sided shift, then every point $\mathbf{s} \in X$ is chain recurrent. Indeed, let $\mathbf{s}^{(n)}=w_{n} w_{n} w_{n} \ldots$, where w_{n} is the beginning of \mathbf{s} of length n. Then $\sigma^{n}\left(\mathbf{s}^{(n)}\right)=\mathbf{s}^{(n)}$ and $\mathbf{s}^{(n)} \rightarrow \mathbf{s}$ as $n \rightarrow \infty$.
- If $X=\Sigma_{\mathcal{A}}$ and $F=\sigma$ is the one-sided shift, then not every point is recurrent. For example, $\mathbf{s}=(1000 \ldots)$ is not recurrent.
- If $X=\Sigma_{\mathcal{A}}^{ \pm}$and $F=\sigma$ is the two-sided shift, then every point is chain recurrent but not every point is recurrent, e.g., $\mathbf{s}=(\ldots 000.1000 \ldots)$.

Let $F: X \rightarrow X$ be a homeomorphism of a metric space X.
Definition. Suppose $x \in W^{s}(p) \cap W^{u}(q)$, where p and q are periodic points of F. Then x is called heteroclinic if $p \neq q$ and homoclinic if $p=q$.

- Any homoclinic point is chain recurrent.
- If $X=\mathbb{T}^{2}$ and F is a hyperbolic toral automorphism, then all points of X are chain recurrent (periodic points of F are dense and so are homoclinic points for the fixed point $[0,0]$).
- If F is the logistic map $F(x)=\mu x(1-x), \mu>4$, then chain recurrent points are all points of the invariant Cantor set.
- If F is the solenoid map, then chain recurrent points are all points of the solenoid.
- If F is the horseshoe map, then chain recurrent points are the attracting fixed point and all points of the invariant Cantor set.

