MATH 614
Dynamical Systems and Chaos

Lecture 27:
Holomorphic dynamics.



Complex numbers

C: complex numbers.

Complex number: |z = x + iy,

where x,y € R and 2 = —1.
I = +/—1: imaginary unit
Alternative notation: z = x + yi.

x = real part of z,
Iy = imaginary part of z

y =0 = z = x (real number)
x =0 = z =iy (purely imaginary number)



We add, subtract, and multiply complex numbers as
polynomials in i (but keep in mind that 2 = —1).

If 2z =x1 +iy1 and 2z = x» + iy», then
21+ 2= (x1+x)+i(y1+ ),
21— 2= (x1—x)+i()1 — y2),
212 = (x1x2 — y1y2) + i(x1y2 + xoy1).

Given z = x + iy, the complex conjugate of z is
Z=x—1Iy. The modulus of z is |z| = \/x% + y2.
2z = (x+iy)(x—iy) = x* = (iy)? = x* + y* = [2]*.
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Complex exponentials

Definition. For any z € C let
2 n
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Remark. A sequence of complex numbers
z1=x1+ iy1, 2o = Xo + Iy»,... converges

to z=x-+1Iy if x,—x and y, =y as n — <.

Theorem 1 If z=x+ iy, x,y € R, then
e’ = e*(cosy + isiny).

In particular, e'® =cos¢ + ising, ¢ € R.

Theorem 2 e*™" = ¢e?.¢e" forall z,w € C.



Proposition €' = cos¢ +ising forall ¢ € R.
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= COS ¢ + i sin ¢.



Geometric representation

Any complex number z = x + iy is represented by
the vector/point (x,y) € R?.

A

y

X=rcos¢, y=rsing = z = r(cos¢+isin¢) = re
If zz = ne' and z = e, then



Fundamental Theorem of Algebra

Any polynomial of degree n > 1, with complex
coefficients, has exactly n roots (counting with
multiplicities).

Equivalently, if
p(z) = apz"+ ap 12" 1+ + a1z + a,

where a; € C and a, # 0, then there exist complex
numbers zi, 2, ..., 2z, such that

p(z) =a)(z—z21)(z— z)...(z — z,).



Holomorphic functions

Suppose D C C is a domain and consider a

function f: D — C. The function f is called

complex differentiable at a point zy € D if
im f(z) — f(zo)

Z— 2y Z — ZO

exists.

The limit value is the derivative f'(z).

The function f is called holomorphic at a point

zo € D if it is complex differentiable in a
neighborhood of z;. f is holomorphic on D if it is
holomorphic at every point of D.



To each complex function f : D — C we associate
a real vector-valued function (u,v): D — R?
defined by f(x + iy) = u(x,y) + iv(x, y).

Theorem The function f is holomorphic if and

only if u,v have continuous partial derivatives %,
X

9u 9v 9v and, moreover, the Cauchy-Riemann
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equations are satisfied:
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Analytic functions

The function f : D — C is called analytic at a point zy € D
if it can be expanded into a convergent power series

f(z) = cn(z — z)"
n=0
in a neighborhood of z;. f is analytic on D if it is analytic at
every point of D.

Examples.
e Any complex polynomial is an analytic function on C.

e Any rational function R(z) = P(z)/Q(z), where P, Q are
polynomials, is analytic on its domain.

e The exponential function is analytic on C.



Theorem A function f : D — C is analytic on D
if and only if it is holomorphic on D. If f is analytic
then it coincides with its Taylor series

oo

f(z) :Z

n=0

(z — z9)"

on any open disk B(zy,r) ={ze€ C:|z—2z| < r}
that is contained within D.



Complex linear functions

L,:C—=C, acC.
L.(z) = az for all z € C.

If o« =1 then L, is the identity map. Otherwise 0
is the only fixed point.

Dynamics of L, depends on .
L)(z) =a"z for n=1,2,...
Let o = pe’®, z =re®. Then

L"(2) = p"re/(n9+9),

If |a] <1 then lim L}(z)=0 forall z € C.
n—o0

If || > 1 then lim L2(z) = oo forall z#0.
n—o0






Rotations of the plane

If |o| =1 then L, is the rotation of the complex
plane by angle 6, the argument of o (a = €'?).

Each circle {z € C: |z| =r}, r > 0 is invariant
under L,. The restriction of L, is a rotation of the
circle.

In polar coordinates (r, ¢),

(r,@) — (r,¢0+0).
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The argument of a, |a| =1 is a rational multiple
of 7 if and only if a is a root of unity: o =1 for
some integer k > 0.

If o is a root of unity v/1, then LX is the identity.
Hence all orbits are periodic.

If v is not a root of unity then

(i) each orbit is dense in a circle centered at the
origin (Jacobi's Theorem);

(ii) each orbit is uniformly distributed with respect
to the length measure on the circle

(the Kronecker-Weyl Theorem).



Complex affine functions

Lng:C—=C, a,8eC.

Lop(z) =az+ f forall ze C.

L; g is the translation of the complex plane by 3.
L7 5(z)=z+np for n=1,2,...

Each orbit tends to infinity (unless 3 # 0).

If o # 1 then L, 3 is conjugate to L,.

The equation L, 3(z) = z has a unique solution
z20=p(1—a)t. Then L,z3(z) — 20 = Lo(z — 2)
for all z € C.

Hence Log = LizLaliy,.



Squaring function
Q:C—C, Qz)=2%
Let z=re’”. Then Qu(z) = r’e*?.
Q(z) = 22 = F'el)
If r=1z|] <1 then Qf(z) - 0 as n— oc.
If |z] > 1 then Qf(z) — oo as n — oc.

The unit circle |z| =1 is invariant under @ and
the restriction of @y is conjugate to the doubling
map.

In polar coordinates (r, ¢),

(r,¢) = (r*,20).



Theorem The squaring map @ is chaotic on the
unit circle, that is,

e it is topologically transitive,

e periodic points are dense,

e it has sensitive dependence on initial conditions.

Proposition For any z € C,
neighborhood W of z we have

z| =1 and any

J @s(w) =\ {oy.
n=0



Proof: Any neighborhood of a point on the unit
circle contains a small chunk of a wedge of the form

V={re”|n<r<n ¢ <¢<pl.
where n <1< r. Now
QV)={re” | " <r<nd, 2" <o <2"$y}
for n=1,2,... If 2"(¢o — ¢1) > 27 then
QV)={zeC:r¥' <|z| <3}

Since 1 <1< n, it follows that

U @(v)=c\{o}.
n=0



Fixed points

Let U C C beadomainand F: U — C bea
holomorphic function.

Suppose that F(z) = z, for some z € U.
The fixed point zj is called

e attracting if |F'(z)| < 1;

o repelling if |F'(z)| > 1;

e neutral if |F'(z)|=1.

Example. L (0) = .



Theorem 1 Suppose zj is an attracting fixed point
for a holomorphic function F. Then there exist
0 >0and 0 < p < 1 such that

F(2) — 2| < plz — 2

foranyze D={ze C: |z —z| < d}.

In particular, lim F"(z) = z for all z € D.
n—oo

Hint. Take |F'(z)| < p < 1.



Theorem 2 Suppose z; is a repelling fixed point
for a holomorphic function F. Then there exist
0 >0 and M > 1 such that

|F(z) — 2| > M|z — z|

forallze D={ze C:|z— z| < d}.

In particular, for any z € D \ {z} there is an
integer n > 0 such that F"(z) ¢ D.

Hint. Take 1 < M < |F'(z)|.



