MATH 614 Dynamical Systems and Chaos

Lecture 29:

Local holomorphic dynamics at fixed points.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F : U \to \mathbb{C}$ be a holomorphic function. Suppose that $F(z_0) = z_0$ for some $z_0 \in U$. The fixed point z_0 is called

- attracting if $|F'(z_0)| < 1$;
- repelling if $|F'(z_0)| > 1$;
- neutral if $|F'(z_0)| = 1$.

Now suppose that $F^n(z_1) = z_1$ for some $z_1 \in U$ and an integer $n \ge 1$. The periodic point z_1 is called

- attracting if $|(F^n)'(z_1)| < 1$;
- repelling if $|(F^n)'(z_1)| > 1$;
- neutral if $|(F^n)'(z_1)| = 1$.

The multiplier $(F^n)'(z_1)$ is the same for all points in the orbit of z_1 . In particular, all these points are of the same type as z_1 . Note that the multiplier is preserved under any holomorphic change of coordinates.

Hyperbolic fixed points

Theorem 1 Suppose z_0 is an attracting fixed point for a holomorphic function F. Then there exist $\delta > 0$ and $0 < \mu < 1$ such that

$$|F(z)-z_0| \leq \mu |z-z_0|$$

for any $z \in D = \{z \in \mathbb{C} : |z - z_0| < \delta\}$. In particular, $\lim_{n \to \infty} F^n(z) = z_0 \text{ for all } z \in D.$

Theorem 2 Suppose z_0 is a repelling fixed point for a holomorphic function F. Then there exist $\delta > 0$ and M > 1 such that

$$|F(z)-z_0|\geq M|z-z_0|$$

for all $z \in D = \{z \in \mathbb{C} : |z - z_0| < \delta\}$. In particular, for any $z \in D \setminus \{z_0\}$ there is an integer $n \ge 1$ such that $F^n(z) \notin D$.

Theorem 3 Let F be a holomorphic function at 0 such that F(0) = 0 and $F'(0) = \lambda$, where $0 < |\lambda| < 1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \to \mathbb{C}$ such that $F \circ h = h \circ L$ in U, where $L(z) = \lambda z$.

Idea of the proof: We are looking for a map h of the form $h(z) = z + \sum_{i=2}^{\infty} c_i z^i$, where c_i are unknown coefficients. Let $F(z) = \lambda z + \sum_{i=2}^{\infty} a_i z^i$ be the Taylor expansion of F. The condition $F \circ h = h \circ L$ holds if

$$\lambda h(z) + \sum_{i=2}^{\infty} a_i (h(z))^i = \lambda z + \sum_{i=2}^{\infty} c_i \lambda^i z^i$$

or, equivalently,

$$\sum_{i=2}^{\infty} (\lambda^i - \lambda) c_i z^i = \sum_{i=2}^{\infty} a_i (h(z))^i.$$

From this equality of formal power series we can recursively determine all coefficients c_i . For example, $c_2 = a_2/(\lambda^2 - \lambda)$. Then one has to prove that the radius of convergence for the power series h(z) is positive.

Theorem 4 Let F be a holomorphic function at 0 such that F(0) = 0 and $F'(0) = \lambda$, where $|\lambda| > 1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \to \mathbb{C}$ such that $F \circ h = h \circ L$ in $L^{-1}(U)$, where $L(z) = \lambda z$.

Idea of the proof: Since $F'(0) \neq 0$, the function F is invertible in a neighborhood of 0. The inverse function F^{-1} is also holomorphic. The point 0 is an attracting fixed point of F^{-1} .

It remains to apply the previous theorem.

Neutral fixed points

Example. •
$$F(z) = z + z^2$$
.

The map has a fixed point at 0, which is neutral: F'(0) = 1. The set D_0 of all points z satisfying $F^n(z) \to 0$ as $n \to \infty$ is open and connected.

The fixed point 0 is one of the cusp points at the boundary of D_0 . The others correspond to eventually fixed points.

Neutral fixed points

Proposition Suppose a function *F* is holomorphic at 0 and satisfies F(0) = 0, F'(0) = 1, F''(0) = 2 so that $F(z) = z + z^2 + O(|z|^3)$ as $z \to 0$.

Then there exists $\mu > 0$ such that (i) all points in the disc $D_{-} = \{z \in \mathbb{C} : |z + \mu| < \mu\}$ are attracted to 0; and (ii) all points in the disc $D_{+} = \{z \in \mathbb{C} : |z - \mu| < \mu\}$ are repelled from 0.

Proof: We change coordinates using the function H(z) = 1/z, which maps the discs D_- and D_+ onto halfplanes $\operatorname{Re} z < -1/(2\mu)$ and $\operatorname{Re} z > 1/(2\mu)$.

The function *F* is changed to G(z) = 1/F(1/z). Since $F(z) = z + z^2 + O(|z|^3)$ as $z \to 0$, it follows that $F(1/z) = z^{-1} + z^{-2} + O(|z|^{-3})$ $= z^{-1}(1 + z^{-1} + O(|z|^{-2}))$ as $z \to \infty$.

Then

$$egin{aligned} G(z) &= zig(1+z^{-1}+O(|z|^{-2})ig)^{-1} \ &= zig(1-z^{-1}+O(|z|^{-2})ig) = z-1+O(|z|^{-1}). \end{aligned}$$

If μ is small enough, then the halfplane $\operatorname{Re} z < -1/(2\mu)$ is invariant under the map G while the halfplane $\operatorname{Re} z > 1/(2\mu)$ is invariant under G^{-1} .

The proposition suggests that for most of the points in a neighborhood of 0, the forward and backward orbits under the map F both converge to 0.

Examples. • $F(z) = \frac{z}{1-z}$.

This is a Möbius transformation with 0 the only fixed point. It follows that all forward and backward orbits converge to 0.

•
$$F(z) = z + z^2$$
.

The orbits of all points on the ray z > 0 converge to ∞ and so are the orbits of all points in a small cusp about this ray.