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Dynamical Systems and Chaos

Lecture 29:
Local holomorphic dynamics at fixed points.



Classification of periodic points

Let U ⊂ C be a domain and F : U → C be a holomorphic
function. Suppose that F (z0) = z0 for some z0 ∈ U. The
fixed point z0 is called

• attracting if |F ′(z0)| < 1;
• repelling if |F ′(z0)| > 1;
• neutral if |F ′(z0)| = 1.

Now suppose that F n(z1) = z1 for some z1 ∈ U and an
integer n ≥ 1. The periodic point z1 is called

• attracting if |(F n)′(z1)| < 1;
• repelling if |(F n)′(z1)| > 1;
• neutral if |(F n)′(z1)| = 1.

The multiplier (F n)′(z1) is the same for all points in the orbit
of z1. In particular, all these points are of the same type as
z1. Note that the multiplier is preserved under any
holomorphic change of coordinates.



Hyperbolic fixed points

Theorem 1 Suppose z0 is an attracting fixed point for a
holomorphic function F . Then there exist δ > 0 and
0 < µ < 1 such that

|F (z)− z0| ≤ µ|z − z0|

for any z ∈ D = {z ∈ C : |z − z0| < δ}. In particular,
lim
n→∞

F n(z) = z0 for all z ∈ D.

Theorem 2 Suppose z0 is a repelling fixed point for a
holomorphic function F . Then there exist δ > 0 and M > 1
such that

|F (z)− z0| ≥ M |z − z0|

for all z ∈ D = {z ∈ C : |z − z0| < δ}. In particular,
for any z ∈ D \ {z0} there is an integer n ≥ 1 such that
F n(z) /∈ D.



Theorem 3 Let F be a holomorphic function at 0 such that
F (0) = 0 and F ′(0) = λ, where 0 < |λ| < 1. Then there is
a neighborhood U of 0 and a holomorphic map h : U → C

such that F◦h = h◦L in U, where L(z) = λz .

Idea of the proof: We are looking for a map h of the form
h(z) = z +

∑

∞

i=2
ciz

i , where ci are unknown coefficients.
Let F (z) = λz +

∑

∞

i=2
aiz

i be the Taylor expansion of F .
The condition F◦h = h◦L holds if

λh(z) +
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ai(h(z))

i = λz +
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ciλ

iz i

or, equivalently,
∑∞

i=2
(λi − λ)ciz

i =
∑∞

i=2
ai(h(z))

i .

From this equality of formal power series we can recursively
determine all coefficients ci . For example, c2 = a2/(λ

2 − λ).
Then one has to prove that the radius of convergence for the
power series h(z) is positive.



Theorem 4 Let F be a holomorphic function at 0
such that F (0) = 0 and F ′(0) = λ, where |λ| > 1.

Then there is a neighborhood U of 0 and a
holomorphic map h : U → C such that F◦h = h◦L

in L−1(U), where L(z) = λz .

Idea of the proof: Since F ′(0) 6= 0, the function F

is invertible in a neighborhood of 0. The inverse

function F−1 is also holomorphic. The point 0 is an
attracting fixed point of F−1.

It remains to apply the previous theorem.



Neutral fixed points

Example. • F (z) = z + z2.

The map has a fixed point at 0, which is neutral: F ′(0) = 1.
The set D0 of all points z satisfying F n(z) → 0 as n → ∞ is
open and connected.

The fixed point 0 is one of the cusp points at the boundary of
D0. The others correspond to eventually fixed points.



Neutral fixed points

Proposition Suppose a function F is holomorphic at 0 and
satisfies F (0) = 0, F ′(0) = 1, F ′′(0) = 2 so that
F (z) = z + z2 + O(|z |3) as z → 0.

Then there exists µ > 0 such that (i) all points in the disc
D− = {z ∈ C : |z + µ| < µ} are attracted to 0; and (ii) all
points in the disc D+ = {z ∈ C : |z − µ| < µ} are repelled
from 0.



Proof: We change coordinates using the function
H(z) = 1/z , which maps the discs D− and D+ onto
halfplanes Re z < −1/(2µ) and Re z > 1/(2µ).

The function F is changed to G (z) = 1/F (1/z). Since
F (z) = z + z2 + O(|z |3) as z → 0, it follows that

F (1/z) = z−1 + z−2 + O(|z |−3)

= z−1
(

1 + z−1 + O(|z |−2)
)

as z → ∞.

Then

G (z) = z
(

1 + z−1 + O(|z |−2)
)

−1

= z
(

1− z−1 + O(|z |−2)
)

= z − 1 + O(|z |−1).

If µ is small enough, then the halfplane Re z < −1/(2µ) is
invariant under the map G while the halfplane Re z > 1/(2µ)
is invariant under G−1.



The proposition suggests that for most of the points in a
neighborhood of 0, the forward and backward orbits under the
map F both converge to 0.

Examples. • F (z) =
z

1− z
.

This is a Möbius transformation with 0 the only fixed point.
It follows that all forward and backward orbits converge to 0.

• F (z) = z + z2.

The orbits of all points on the ray z > 0 converge to ∞ and
so are the orbits of all points in a small cusp about this ray.


