MATH 614

Dynamical Systems and Chaos
Lecture 29:
Local holomorphic dynamics at fixed points.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \rightarrow \mathbb{C}$ be a holomorphic function. Suppose that $F\left(z_{0}\right)=z_{0}$ for some $z_{0} \in U$. The fixed point z_{0} is called

- attracting if $\left|F^{\prime}\left(z_{0}\right)\right|<1$;
- repelling if $\left|F^{\prime}\left(z_{0}\right)\right|>1$;
- neutral if $\left|F^{\prime}\left(z_{0}\right)\right|=1$.

Now suppose that $F^{n}\left(z_{1}\right)=z_{1}$ for some $z_{1} \in U$ and an integer $n \geq 1$. The periodic point z_{1} is called

- attracting if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|<1$;
- repelling if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|>1$;
- neutral if $\left|\left(F^{n}\right)^{\prime}\left(z_{1}\right)\right|=1$.

The multiplier $\left(F^{n}\right)^{\prime}\left(z_{1}\right)$ is the same for all points in the orbit of z_{1}. In particular, all these points are of the same type as z_{1}. Note that the multiplier is preserved under any holomorphic change of coordinates.

Hyperbolic fixed points

Theorem 1 Suppose z_{0} is an attracting fixed point for a holomorphic function F. Then there exist $\delta>0$ and $0<\mu<1$ such that

$$
\left|F(z)-z_{0}\right| \leq \mu\left|z-z_{0}\right|
$$

for any $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$. In particular, $\lim _{n \rightarrow \infty} F^{n}(z)=z_{0}$ for all $z \in D$.

Theorem 2 Suppose z_{0} is a repelling fixed point for a holomorphic function F. Then there exist $\delta>0$ and $M>1$ such that

$$
\left|F(z)-z_{0}\right| \geq M\left|z-z_{0}\right|
$$

for all $z \in D=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<\delta\right\}$. In particular, for any $z \in D \backslash\left\{z_{0}\right\}$ there is an integer $n \geq 1$ such that $F^{n}(z) \notin D$.

Theorem 3 Let F be a holomorphic function at 0 such that $F(0)=0$ and $F^{\prime}(0)=\lambda$, where $0<|\lambda|<1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \rightarrow \mathbb{C}$ such that $F \circ h=h \circ L$ in U, where $L(z)=\lambda z$.

Idea of the proof: We are looking for a map h of the form $h(z)=z+\sum_{i=2}^{\infty} c_{i} z^{i}$, where c_{i} are unknown coefficients. Let $F(z)=\lambda z+\sum_{i=2}^{\infty} a_{i} z^{i}$ be the Taylor expansion of F.
The condition $F \circ h=h \circ L$ holds if

$$
\lambda h(z)+\sum_{i=2}^{\infty} a_{i}(h(z))^{i}=\lambda z+\sum_{i=2}^{\infty} c_{i} \lambda^{i} z^{i}
$$

or, equivalently,

$$
\sum_{i=2}^{\infty}\left(\lambda^{i}-\lambda\right) c_{i} z^{i}=\sum_{i=2}^{\infty} a_{i}(h(z))^{i}
$$

From this equality of formal power series we can recursively determine all coefficients c_{i}. For example, $c_{2}=a_{2} /\left(\lambda^{2}-\lambda\right)$. Then one has to prove that the radius of convergence for the power series $h(z)$ is positive.

Theorem 4 Let F be a holomorphic function at 0 such that $F(0)=0$ and $F^{\prime}(0)=\lambda$, where $|\lambda|>1$. Then there is a neighborhood U of 0 and a holomorphic map $h: U \rightarrow \mathbb{C}$ such that $F \circ h=h \circ L$ in $L^{-1}(U)$, where $L(z)=\lambda z$.

Idea of the proof: Since $F^{\prime}(0) \neq 0$, the function F is invertible in a neighborhood of 0 . The inverse function F^{-1} is also holomorphic. The point 0 is an attracting fixed point of F^{-1}.

It remains to apply the previous theorem.

Neutral fixed points

Example. - $F(z)=z+z^{2}$.
The map has a fixed point at 0 , which is neutral: $F^{\prime}(0)=1$. The set D_{0} of all points z satisfying $F^{n}(z) \rightarrow 0$ as $n \rightarrow \infty$ is open and connected.

The fixed point 0 is one of the cusp points at the boundary of D_{0}. The others correspond to eventually fixed points.

Neutral fixed points

Proposition Suppose a function F is holomorphic at 0 and satisfies $F(0)=0, F^{\prime}(0)=1, F^{\prime \prime}(0)=2$ so that $F(z)=z+z^{2}+O\left(|z|^{3}\right)$ as $z \rightarrow 0$.
Then there exists $\mu>0$ such that (i) all points in the disc $D_{-}=\{z \in \mathbb{C}:|z+\mu|<\mu\}$ are attracted to 0 ; and (ii) all points in the disc $D_{+}=\{z \in \mathbb{C}:|z-\mu|<\mu\}$ are repelled from 0 .

Proof: We change coordinates using the function $H(z)=1 / z$, which maps the discs D_{-}and D_{+}onto halfplanes $\operatorname{Re} z<-1 /(2 \mu)$ and $\operatorname{Re} z>1 /(2 \mu)$.
The function F is changed to $G(z)=1 / F(1 / z)$. Since $F(z)=z+z^{2}+O\left(|z|^{3}\right)$ as $z \rightarrow 0$, it follows that

$$
\begin{aligned}
F(1 / z) & =z^{-1}+z^{-2}+O\left(|z|^{-3}\right) \\
& =z^{-1}\left(1+z^{-1}+O\left(|z|^{-2}\right)\right) \text { as } z \rightarrow \infty .
\end{aligned}
$$

Then

$$
\begin{aligned}
G(z) & =z\left(1+z^{-1}+O\left(|z|^{-2}\right)\right)^{-1} \\
& =z\left(1-z^{-1}+O\left(|z|^{-2}\right)\right)=z-1+O\left(|z|^{-1}\right) .
\end{aligned}
$$

If μ is small enough, then the halfplane $\operatorname{Re} z<-1 /(2 \mu)$ is invariant under the map G while the halfplane $\operatorname{Re} z>1 /(2 \mu)$ is invariant under G^{-1}.

The proposition suggests that for most of the points in a neighborhood of 0 , the forward and backward orbits under the map F both converge to 0 .

Examples. - $F(z)=\frac{z}{1-z}$.
This is a Möbius transformation with 0 the only fixed point. It follows that all forward and backward orbits converge to 0 .

- $F(z)=z+z^{2}$.

The orbits of all points on the ray $z>0$ converge to ∞ and so are the orbits of all points in a small cusp about this ray.

