Lecture 30:

Dynamical Systems and Chaos

MATH 614

Neutral fixed points (continued). The Julia set.

Classification of periodic points

Let $U \subset \mathbb{C}$ be a domain and $F: U \to \mathbb{C}$ be a holomorphic function. Suppose that $F(z_0) = z_0$ for some $z_0 \in U$. The fixed point z_0 is called

- attracting if $|F'(z_0)| < 1$;
- repelling if $|F'(z_0)| > 1$;
- neutral if $|F'(z_0)| = 1$.

Now suppose that $F^n(z_1) = z_1$ for some $z_1 \in U$ and an integer $n \ge 1$. The periodic point z_1 is called

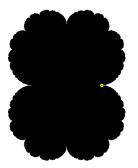
- attracting if $|(F^n)'(z_1)| < 1$;
- repelling if $|(F^n)'(z_1)| > 1$;
- neutral if $|(F^n)'(z_1)| = 1$.

The multiplier $(F^n)'(z_1)$ is the same for all points in the orbit of z_1 (in particular, all these points are of the same type as z_1). Moreover, the multiplier is preserved under any holomorphic change of coordinates.

Neutral fixed points

Example.
$$\bullet$$
 $F(z) = z + z^2$.

The map has a fixed point at 0, which is neutral: F'(0) = 1. The set D_0 of all points z satisfying $F^n(z) \to 0$ as $n \to \infty$ is open and connected.

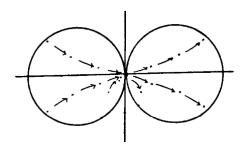


The fixed point 0 is one of the cusp points at the boundary of D_0 . The others correspond to eventually fixed points.

Neutral fixed points

Proposition Suppose a function F is holomorphic at 0 and satisfies F(0) = 0, F'(0) = 1, F''(0) = 2 so that $F(z) = z + z^2 + O(|z|^3)$ as $z \to 0$.

Then there exists $\mu > 0$ such that **(i)** all points in the disc $D_- = \{z \in \mathbb{C} : |z + \mu| < \mu\}$ are attracted to 0; and **(ii)** all points in the disc $D_+ = \{z \in \mathbb{C} : |z - \mu| < \mu\}$ are repelled from 0.



Proof: We change coordinates using the function H(z)=1/z, which maps the discs D_- and D_+ onto halfplanes $\operatorname{Re} z<-1/(2\mu)$ and $\operatorname{Re} z>1/(2\mu)$.

The function F is changed to G(z)=1/F(1/z). Since $F(z)=z+z^2+O(|z|^3)$ as $z\to 0$, it follows that

$$F(1/z) = z^{-1} + z^{-2} + O(|z|^{-3})$$

= $z^{-1} (1 + z^{-1} + O(|z|^{-2}))$ as $z \to \infty$.

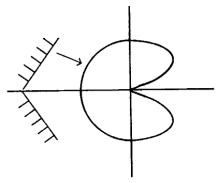
Then

$$G(z) = z(1+z^{-1}+O(|z|^{-2}))^{-1}$$

= $z(1-z^{-1}+O(|z|^{-2})) = z-1+O(|z|^{-1}).$

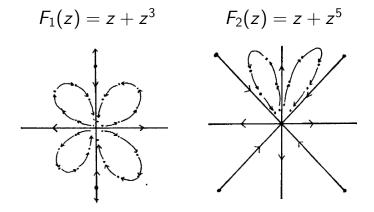
If μ is small enough, then the halfplane $\operatorname{Re} z < -1/(2\mu)$ is invariant under the map G while the halfplane $\operatorname{Re} z > 1/(2\mu)$ is invariant under G^{-1} .

In the proof of the proposition, we could use wedge-shaped regions instead of halfplanes. This would allow to extend basins of attraction from discs to cardioid-shaped regions.



In the case not all points near 0 are attracted to 0, the set of points that are attracted is locally a simply connected domain with 0 on its boundary. This domain is called the **attracting petal** of the fixed point 0. Similarly, there is also the **repelling petal** of 0.

More types of neutral fixed points



In the first example, there are two attracting and two repelling petals of the fixed point 0. In the second example, there are 4 attracting and 4 repelling petals.

Siegel discs

Theorem (Siegel) Let F be a holomorphic function at z_0 such that $F(z_0)=z_0$ and $F'(z_0)=e^{2\pi i\alpha}$, where α is irrational. Suppose that α is not very well approximated by rational numbers, namely, $|\alpha-p/q|>aq^{-b}$ for some a,b>0 and all $p,q\in\mathbb{Z}$. Then there is a neighborhood U of z_0 on which the function F is analytically conjugate to the irrational rotation $L(z)=e^{2\pi i\alpha}z$.

The domain U is called a **Siegel disc**.

In the case α is well approximated by rational numbers, it can happen that the fixed point z_0 is a limit point of other periodic points of the map F.

Idea of the proof: We are looking for a map h of the form $h(z)=z+\sum_{i=2}^{\infty}c_iz^i$, where c_i are unknown coefficients. Let $F(z)=\lambda z+\sum_{i=2}^{\infty}a_iz^i$ be the Taylor expansion of F, $\lambda=e^{2\pi i\alpha}$.

The condition $F \circ h = h \circ L$ holds if

$$\lambda h(z) + \sum_{i=2}^{\infty} a_i (h(z))^i = \lambda z + \sum_{i=2}^{\infty} c_i \lambda^i z^i$$

or, equivalently,

$$\sum\nolimits_{i=2}^{\infty}(\lambda^{i}-\lambda)c_{i}z^{i}=\sum\nolimits_{i=2}^{\infty}a_{i}(h(z))^{i}.$$

From this equality of formal power series we can recursively determine all coefficients c_i provided that λ is not a root of unity. For example, $c_2 = a_2/(\lambda^2 - \lambda)$. In general, $c_i = K_i(\lambda, a_2, \ldots, a_i, c_2, \ldots, c_{i-1})/(\lambda^i - \lambda)$ for some polynomial K_i .

The Siegel disc exists if and only if the radius of convergence for the power series h(z) is positive.

The Julia set

Suppose $P:U\to U$ is a holomorphic map, where U is a domain in \mathbb{C} , the entire plane \mathbb{C} , or the Riemann sphere $\overline{\mathbb{C}}$.

Informally, the Julia set of P is the set of points where iterates of P exhibit sensitive dependence on initial conditions (chaotic behavior). The Fatou set of P is the set of points where iterates of P exhibit regular, stable behavior.

Definition. The **Julia set** J(P) of P is the closure of the set of repelling periodic points of P.

Example. $Q_0: \mathbb{C} \to \mathbb{C}, \ Q_0(z) = z^2$.

0 is an attracting fixed point. The other periodic points are located on the unit circle |z|=1. All of them are repelling.

Any point of the form

$$\exp\left(2\pi i\frac{m}{n}\right),$$

where m, n are integers and n is odd, is periodic. Hence periodic points are dense in the unit circle.

Thus
$$J(Q_0) = \{z \in \mathbb{C} : |z| = 1\}.$$

Quadratic family

The quadratic family $Q_c: \mathbb{C} \to \mathbb{C}, \ c \in \mathbb{C},$ $Q_c(z) = z^2 + c.$

Theorem $J(Q_{-2}) = [-2, 2].$

Proof: The map $H(z)=z+z^{-1}$ is holomorphic on $R=\{z\in\mathbb{C}:|z|>1\}$. It maps R onto $\mathbb{C}\setminus[-2,2]$ in a one-to-one way (a conformal map). Also, H maps each of the semicircles

$$\{e^{i\phi}\mid 0\leq \phi\leq \pi\}$$
 and $\{e^{i\phi}\mid -\pi\leq \phi\leq 0\}$

homeomorphically onto [-2,2].

Finally, $H(Q_0(z)) = Q_{-2}(H(z))$ for all $z \neq 0$.