MATH 614

Dynamical Systems and Chaos

Lecture 36: Invariant measure.

Ergodic theory

Topological dynamics is the study of continuous transformations.
Smooth dynamics is the study of smooth transformations.
Holomorphic dynamics is the study of holomorphic transformations.

Ergodic theory (a.k.a. metric theory of dynamical systems) is the study of measure-preserving transformations.

The measure is an abstract concept that generalizes the notions of length, area, and volume.

Examples

- Bijective self-map $F: X \rightarrow X$.

Any set $E \subset X$ is mapped onto a set with the same number of elements.

- Translation of the real line.
$F: \mathbb{R} \rightarrow \mathbb{R}, F(x)=x+x_{0}$. Any interval is mapped onto an interval of the same length.
- Rotation of the circle.

Any arc is mapped onto an arc of the same length.

Non-continuous example

- Interval exchange transformation.

An interval exchange transformation $F: I \rightarrow l$ of an interval $/$ is defined by cutting the interval into several subintervals and then rearranging them by translation. The image of any subinterval $I_{0} \subset I$ consists of one or several intervals whose total length equals the length of I_{0}.
Note that the transformation F is not well defined at the cutting points. Consequently, the orbit under F is not defined for a finite or countable set of points which may be dense in I. However this is not a concern as in ergodic theory sets of zero measure can be neglected.

- Motion of the Euclidean plane.

Any domain is mapped onto a domain of the same area.

- Linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
$L(\mathbf{x})=A \mathbf{x}$, where A is a 2×2 matrix. The image of any domain of area α has area $\alpha|\operatorname{det} A|$. In the case $\operatorname{det} A= \pm 1$, the map L is area-preserving.
- Translation of the torus.
$F: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}, F(\mathbf{x})=\mathbf{x}+\mathbf{x}_{0}$. This is the quotient of a translation of the Euclidean plane under the natural projection $\pi: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$.
- Toral automorphism.
$F: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}\left(\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}\right), F(\mathbf{x})=A \mathbf{x}$, where A is a 2×2 matrix with integer entries and $\operatorname{det} A= \pm 1$. This is the quotient of an area-preserving linear map under the natural projection $\pi: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$.

Example with continuous time

- Area-preserving flow.

Consider an autonomous system of two ordinary differential equations of the first order

$$
\left\{\begin{array}{l}
\dot{x}=g_{1}(x, y), \\
\dot{y}=g_{2}(x, y),
\end{array}\right.
$$

where g_{1}, g_{2} are differentiable functions defined in a domain $D \subset \mathbb{R}^{2}$. In vector form, $\dot{\mathbf{v}}=G(\mathbf{v})$, where $G: D \rightarrow \mathbb{R}^{2}$ is a vector field. Assume that for any $\mathbf{x} \in D$ the initial value problem $\dot{\mathbf{v}}=G(\mathbf{v}), \mathbf{v}(0)=\mathbf{x}$ has a unique solution $\mathbf{v}_{\mathbf{x}}(t)$, $t \in \mathbb{R}$. Then the system of ODEs gives rise to a dynamical system with continuous time $F^{t}: D \rightarrow D, t \in \mathbb{R}$ defined by $F^{t}(\mathbf{x})=\mathbf{v}_{\mathbf{x}}(t)$ for all $\mathbf{x} \in D$ and $t \in \mathbb{R}$.

The flow $\left\{F^{t}\right\}$ is area-preserving if and only if $\nabla \cdot G=\partial g_{1} / \partial x+\partial g_{2} / \partial y=0$ in D.

Non-invertible example

- Doubling map $F: S^{1} \rightarrow S^{1}$.

If $S^{1}=\mathbb{R} / \mathbb{Z}$, then $F(x)=2 x$ for all $x \in S^{1}$. For any arc $\gamma=\left(\omega_{1}, \omega_{2}\right), 0 \leq \omega_{1}<\omega_{2} \leq 1$, of length $\alpha=\omega_{2}-\omega_{1}$ the image $\boldsymbol{F}(\gamma)$ is an arc of length 2α or the entire circle. However the preimage $F^{-1}(\gamma)$ consists of two disjoint arcs $\left(\frac{1}{2} \omega_{1}, \frac{1}{2} \omega_{2}\right)$ and $\left(\frac{1}{2} \omega_{1}+\frac{1}{2}, \frac{1}{2} \omega_{2}+\frac{1}{2}\right)$ of length $\alpha / 2$ so that $F^{-1}(\gamma)$ has the same length measure as γ.

Measure-preserving transformation

Definition. A measured space is a triple
(X, \mathcal{B}, μ), where X is a set, \mathcal{B} is a collection of subsets of X, and μ is a function $\mu: \mathcal{B} \rightarrow[0, \infty]$.
Elements of \mathcal{B} are referred to as measurable sets. The function μ is called the measure on X.
A mapping $T: X \rightarrow X$ is called measurable if preimage of any measurable set under T is also measurable: $E \in \mathcal{B} \Longrightarrow T^{-1}(E) \in \mathcal{B}$.
A measurable mapping $T: X \rightarrow X$ is called measure-preserving if for any $E \in \mathcal{B}$ one has $\mu\left(T^{-1}(E)\right)=\mu(E)$.

Algebra of sets

Definition. A collection \mathcal{B} of subsets of a set X is called an algebra of sets if \mathcal{B} is closed under taking unions $B_{1} \cup B_{2}$, intersections $B_{1} \cap B_{2}$, complements $X \backslash B$, and if \mathcal{B} contains the empty set and the entire set X.

The algebra \mathcal{B} is also closed under taking finite unions $B_{1} \cup B_{2} \cup \cdots \cup B_{n}$, finite intersections $B_{1} \cap B_{2} \cap \cdots \cap B_{n}$, set differences $B_{1} \backslash B_{2}=B_{1} \cap\left(X \backslash B_{2}\right)$, and symmetric differences $B_{1} \triangle B_{2}=\left(B_{1} \backslash B_{2}\right) \cup\left(B_{2} \backslash B_{1}\right)$.

For any subset $B \subset X$ let $\chi_{B}: X \rightarrow\{0,1\}$ denote the characteristic function of $B: \chi_{B}(x)=1$ if $x \in B$ and $\chi_{B}(x)=0$ otherwise. Then $\chi_{x}=1, \chi_{\emptyset}=0$, $\chi_{B_{1} \cap B_{2}}=\chi_{B_{1}} \chi_{B_{2}}, \chi_{B_{1} \cup B_{2}}=\chi_{B_{1}}+\chi_{B_{2}}$ if $B_{1} \cap B_{2}=\emptyset$, $\chi_{B_{1} \backslash B_{2}}=\chi_{B_{1}}-\chi_{B_{2}}$ if $B_{2} \subset B_{1}$, and
$\chi_{B_{1} \triangle B_{2}}=\chi_{B_{1}}+\chi_{B_{2}} \bmod 2$.

σ-algebra

A standard requirement for a measured space (X, \mathcal{B}, μ) is that \mathcal{B} be a σ-algebra.
Definition. An algebra of sets is called a σ-algebra if it is closed under taking countable unions.
Examples of σ-algebras:

- $\{\emptyset, X\}$;
- all subsets of $X\left(2^{X}\right)$;
- all finite and countable subsets of X and their complements.

Proposition Given a collection S of subsets of X, there exists a minimal σ-algebra of subsets of X that contains S.
Suppose X is a topological space. The Borel σ-algebra $\mathcal{B}(X)$ is the minimal σ-algebra that contains all open subsets of X. Elements of $\mathcal{B}(X)$ are called Borel sets. A mapping $F: X \rightarrow X$ is measurable relative to $\mathcal{B}(X)$ if and only if the preimage of any open set is Borel. In particular, each continuous map is measurable.

σ-additive measure

Definition. Suppose \mathcal{B} is an algebra of subsets of a set X. A function $\mu: \mathcal{B} \rightarrow[0, \infty]$ is an additive measure if $\mu(\emptyset)=0$ and, for any disjoint sets $A_{1}, A_{2}, \ldots, A_{n} \in \mathcal{B}$,

$$
\mu\left(\bigcup_{k=1}^{n} A_{k}\right)=\sum_{k=1}^{n} \mu\left(A_{k}\right) .
$$

In the case \mathcal{B} is a σ-algebra, the additive measure μ is σ-additive if for any disjoint sets A_{1}, A_{2}, \ldots from \mathcal{B},

$$
\mu\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} \mu\left(A_{k}\right) .
$$

The measure μ is finite if $\mu(X)<\infty$. μ is σ-finite if $X=\bigcup_{k=1}^{\infty} X_{k}$, where $\mu\left(X_{k}\right)<\infty$ for all k.

Another standard requirement for a measured space (X, \mathcal{B}, μ) is that μ be a σ-additive measure and also be finite or σ-finite.

Definition. A normalized invariant mean on \mathbb{Z} is a function $\mathfrak{m}: 2^{\mathbb{Z}} \rightarrow[0, \infty)$ such that

- $\mathfrak{m}(\emptyset)=0, \mathfrak{m}(\mathbb{Z})=1$;
- if $A_{1}, A_{2}, \ldots, A_{k}$ are disjoint subsets of \mathbb{Z} then $\mathfrak{m}\left(A_{1} \cup \cdots \cup A_{k}\right)=\mathfrak{m}\left(A_{1}\right)+\cdots+\mathfrak{m}\left(A_{k}\right)$;
- $\mathfrak{m}(n+S)=\mathfrak{m}(S)$ for all $n \in \mathbb{Z}$ and $S \subset \mathbb{Z}$.

The mean \mathfrak{m} is a finite, additive measure on \mathbb{Z}. Note that $\mathfrak{m}(\{n\})$ is the same for all $n \in \mathbb{Z}$. Since $\mathfrak{m}(\mathbb{Z})<\infty$, it follows that $\mathfrak{m}(\{n\})=0$. Besides, it follows that \mathfrak{m} is not σ-additive.

Theorem (Banach) There exists a normalized invariant mean on \mathbb{Z}.
That is, the group \mathbb{Z} is amenable.

