MATH 614
Dynamical Systems and Chaos
Lecture 37:

Ergodic theorems.
Ergodicity.



Measure-preserving transformation

Definition. A measured space is a triple

(X, B, 1), where X is a set, B is a o-algebra of
(measurable) subsets of X, and p: B — [0,00] is a
o-additive measure on X (finite or o-finite).

A mapping T : X — X is called measurable if
preimage of any measurable set under T is also
measurable: £ € B = T }(E) € B.

A measurable mapping T : X — X is called
measure-preserving if for any E € B one has

(THE)) = u(E).



Borel sets

Proposition Given a collection S of subsets of X,
there exists a minimal o-algebra of subsets of X
that contains S.

Suppose X is a topological space. The Borel
o-algebra B(X) is the minimal o-algebra that
contains all open subsets of X. Elements of B(X)
are called Borel sets.

A mapping F : X — X is measurable relative to
B(X) if and only if the preimage of any open set is
Borel. In particular, each continuous map is
measurable.



Recurrence

(X, B, 11): measured space
T : X — X: measure-preserving mapping

Let E be a measurable subset of X. A point x € E
is called recurrent if T"(x) € E for some n > 1.

A point x € E is called infinitely recurrent if the
orbit x, T(x), T%(x),... visits E infinitely many
times.

Theorem (Poincaré 1890) Suppose 1 is a finite
measure. Then almost all points of E are infinitely
recurrent.



Lemma 1 Suppose p is a finite measure and p(E) > 0.
Then there exists a recurrent point x € E.

Proof: Let By = E, E; = T7Y(E), E, = T YE) = T %(E),
.., E, =T YE,.1) =T "(E), ... Suppose E,NE, #0
for some nand m, 0 < n< m. Take any point x € E, N E,,
and let y = T"(x). Since T"(x), T"(x) € E, it follows that
y € E and T™ "(y) € E, hence y is a recurrent point.

Now assume that sets Eg, Eq, E,, ... are disjoint.

Since T preserves measure, we have p(E,y1) = u(E,)

for all n >0 so that p(E,) = p(E) > 0 for all n.

Then p(EoUE UE,U...) =00, a contradiction.

Lemma 2 Suppose p is a finite measure. Then almost all
points of E are recurrent.

Proof: Let E., denote the set of all non-recurrent points of E.
This set is measurable: E, = E\ (T"Y(E)UT2(E)U...).
Clearly, no points of E,, are recurrent (relative to E,,). By
Lemma 1, p(E) =0.



Individual ergodic theorem

Let (X, B, i) be a measured space and T : X — X
be a measure-preserving transformation.

Birkhoff’s Ergodic Theorem For any function
f e Li(X,u), the limit
n—1
- k _rx
nh—?;onz%f (T*(x)) = f*(x)

exists for almost all x € X. The function f* is
T-invariant, i.e.,, f*o T = f* almost everywhere.
If 14 is finite then f* € L1(X, ) and

/f*d,u:/fd,u.
X X



Ergodicity

Let (X, B, i) be a measured space and T : X — X be a
measure-preserving transformation.

We say that a measurable set E C X is invariant under T if
wW(EATYE)) =0, thatis, if E= T '(E) up to a set of
zero measure. In particular, if T(E) C E then E C T }(E)
so that u(EATY(E)) = u(T HE)\ E) =0.

Note that there is a measurable set Ey C E such that
W(EAE) =0 and T Y(Ey) = Ey. Namely, let

E,=EUT YE)UT2(E)U.... Then E C E,
wEL\E) =0, w(EEAT Y E)) =0, and T7Y(E) C E;.
Now EO = El N T_I(El) N T_2(E1) M...

Definition. The transformation T is called ergodic with
respect to y if any T-invariant measurable set E has either
zero or full measure: p(E) =0 or pu(X \ E) =0.



Birkhoff’s Ergodic Theorem (ergodic case)
Suppose 1 is finite and T is ergodic. Given
f e Li(X,pn), for almost all x € X we have

1
lim =)  f(T*(x /fd,u.
=00 ”Z M(X) X

(time average is equal to space average)

In the case f = xg (E € B), we obtain

m #{OSkSn—HTk(x)EE}:,u(E)
n—00 n M(X)

(almost every orbit is uniformly distributed)



Koopman’s operator

(X, B, 11): measured space
T : X — X: measure-preserving transformation

To any function f : X — C we assign another
function Uf defined by (Uf)(x) = f(T(x)) for all
x € X.

Linear functional operator U: f — Uf.

Proposition If f is integrable then so is Uf.
Moreover,

/X UF dyi = /X F(T(x)) dp(x) = /X fdp.



f e Lo(X, ) means that [, |f|*du < oco.
Lo(X, u) is a Hilbert space with respect to the inner product

(Fg) = / F(x)2(x) du(x).

Let T be a measure-preserving transformation and U be the
associated operator, Uf =fo T.

Then U(La(x,p)) C La(X, ). Furthermore,
(Uf, Ug) = (f.8)
for all f,g € La(X, o).

That is, U is an isometric operator on the Hilbert space
Lr(X, ). If T isinvertible and T~ is also
measure-preserving, then U is a unitary operator.



Mean ergodic theorem

von Neumann’s Ergodic Theorem Suppose U is
an isometric operator in a Hilbert space H. Then
for any f € H,

n—1

.1 K .
nIer;OEZ%U f=17"(inH),

where f* € H is the orthogonal projection of f on
the subspace of U-invariant functions in H.

Namely, Uf* = f* and (f — f*,g) =0 for any
element g € H such that Ug = g.



If U is associated to a measure-preserving map T : X — X,
then for any f € L,(X, ) we have

. 1 n—1 k *2
n"lﬂo/x‘ﬁzk:ou f—f| du—o,

where f* € (X, u) and Uf* = f*.

Lemma T is ergodic if and only if Uf = f for a measurable
function f implies f is constant (almost everywhere).

If T is ergodic then

. 1 n—1 P 2
nan;oL);zk—oU f—c‘ i =0,

where

C:ﬁ/xfdu.



