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Dynamical Systems and Chaos

Lecture 37:
Ergodic theorems.

Ergodicity.



Measure-preserving transformation

Definition. A measured space is a triple
(X ,B, µ), where X is a set, B is a σ-algebra of
(measurable) subsets of X , and µ : B → [0,∞] is a

σ-additive measure on X (finite or σ-finite).

A mapping T : X → X is called measurable if
preimage of any measurable set under T is also

measurable: E ∈ B =⇒ T−1(E ) ∈ B.

A measurable mapping T : X → X is called
measure-preserving if for any E ∈ B one has

µ(T−1(E )) = µ(E ).



Borel sets

Proposition Given a collection S of subsets of X ,

there exists a minimal σ-algebra of subsets of X
that contains S .

Suppose X is a topological space. The Borel

σ-algebra B(X ) is the minimal σ-algebra that
contains all open subsets of X . Elements of B(X )

are called Borel sets.

A mapping F : X → X is measurable relative to
B(X ) if and only if the preimage of any open set is

Borel. In particular, each continuous map is
measurable.



Recurrence

(X ,B, µ): measured space

T : X → X : measure-preserving mapping

Let E be a measurable subset of X . A point x ∈ E

is called recurrent if T n(x) ∈ E for some n ≥ 1.

A point x ∈ E is called infinitely recurrent if the
orbit x ,T (x),T 2(x), . . . visits E infinitely many
times.

Theorem (Poincaré 1890) Suppose µ is a finite

measure. Then almost all points of E are infinitely
recurrent.



Lemma 1 Suppose µ is a finite measure and µ(E ) > 0.
Then there exists a recurrent point x ∈ E .

Proof: Let E0 = E , E1 = T−1(E ), E2 = T−1(E1) = T−2(E ),
. . . , En = T−1(En−1) = T−n(E ), . . . Suppose En ∩ Em 6= ∅
for some n and m, 0 ≤ n < m. Take any point x ∈ En ∩ Em

and let y = T n(x). Since T n(x),Tm(x) ∈ E , it follows that
y ∈ E and Tm−n(y ) ∈ E , hence y is a recurrent point.

Now assume that sets E0,E1,E2, . . . are disjoint.
Since T preserves measure, we have µ(En+1) = µ(En)
for all n ≥ 0 so that µ(En) = µ(E ) > 0 for all n.
Then µ(E0 ∪ E1 ∪ E2 ∪ . . . ) = ∞, a contradiction.

Lemma 2 Suppose µ is a finite measure. Then almost all
points of E are recurrent.

Proof: Let E∞ denote the set of all non-recurrent points of E .
This set is measurable: E∞ = E \

(

T−1(E ) ∪ T−2(E ) ∪ . . .
)

.
Clearly, no points of E∞ are recurrent (relative to E∞). By
Lemma 1, µ(E∞) = 0.



Individual ergodic theorem

Let (X ,B, µ) be a measured space and T : X → X

be a measure-preserving transformation.

Birkhoff’s Ergodic Theorem For any function
f ∈ L1(X , µ), the limit

lim
n→∞

1

n

n−1
∑

k=0

f (T k(x)) = f ∗(x)

exists for almost all x ∈ X . The function f ∗ is
T -invariant, i.e., f ∗ ◦ T = f ∗ almost everywhere.
If µ is finite then f ∗ ∈ L1(X , µ) and

∫

X

f ∗ dµ =

∫

X

f dµ.



Ergodicity

Let (X ,B, µ) be a measured space and T : X → X be a
measure-preserving transformation.

We say that a measurable set E ⊂ X is invariant under T if
µ(E△T−1(E )) = 0, that is, if E = T−1(E ) up to a set of
zero measure. In particular, if T (E ) ⊂ E then E ⊂ T−1(E )
so that µ(E△T−1(E )) = µ(T−1(E ) \ E ) = 0.

Note that there is a measurable set E0 ⊂ E such that
µ(E△E0) = 0 and T−1(E0) = E0. Namely, let
E1 = E ∪ T−1(E ) ∪ T−2(E ) ∪ . . . . Then E ⊂ E1,
µ(E1 \ E ) = 0, µ(E1△T−1(E1)) = 0, and T−1(E1) ⊂ E1.
Now E0 = E1 ∩ T−1(E1) ∩ T−2(E1) ∩ . . .

Definition. The transformation T is called ergodic with
respect to µ if any T -invariant measurable set E has either
zero or full measure: µ(E ) = 0 or µ(X \ E ) = 0.



Birkhoff’s Ergodic Theorem (ergodic case)

Suppose µ is finite and T is ergodic. Given
f ∈ L1(X , µ), for almost all x ∈ X we have

lim
n→∞

1

n

n−1
∑

k=0

f (T k(x)) =
1

µ(X )

∫

X

f dµ.

(time average is equal to space average)

In the case f = χE (E ∈ B), we obtain

lim
n→∞

#{0 ≤ k ≤ n − 1 | T k(x) ∈ E}

n
=

µ(E )

µ(X )
.

(almost every orbit is uniformly distributed)



Koopman’s operator

(X ,B, µ): measured space
T : X → X : measure-preserving transformation

To any function f : X → C we assign another

function Uf defined by (Uf )(x) = f (T (x)) for all
x ∈ X .

Linear functional operator U : f 7→ Uf .

Proposition If f is integrable then so is Uf .
Moreover,

∫

X

Uf dµ =

∫

X

f (T (x)) dµ(x) =

∫

X

f dµ.



f ∈ L2(X , µ) means that
∫

X
|f |2 dµ < ∞.

L2(X , µ) is a Hilbert space with respect to the inner product

(f , g) =

∫

X

f (x)g(x) dµ(x).

Let T be a measure-preserving transformation and U be the
associated operator, Uf = f ◦ T .

Then U(L2(x , µ)) ⊂ L2(X , µ). Furthermore,

(Uf ,Ug) = (f , g)

for all f , g ∈ L2(X , µ).

That is, U is an isometric operator on the Hilbert space
L2(X , µ). If T is invertible and T−1 is also
measure-preserving, then U is a unitary operator.



Mean ergodic theorem

von Neumann’s Ergodic Theorem Suppose U is
an isometric operator in a Hilbert space H. Then
for any f ∈ H,

lim
n→∞

1

n

n−1
∑

k=0

Ukf = f ∗ (in H),

where f ∗ ∈ H is the orthogonal projection of f on

the subspace of U-invariant functions in H.

Namely, Uf ∗ = f ∗ and (f − f ∗, g) = 0 for any
element g ∈ H such that Ug = g .



If U is associated to a measure-preserving map T : X → X ,
then for any f ∈ L2(X , µ) we have

lim
n→∞

∫

X

∣

∣

∣

1

n

∑n−1

k=0
Uk f − f ∗

∣

∣

∣

2

dµ → 0,

where f ∗ ∈ L2(X , µ) and Uf ∗ = f ∗.

Lemma T is ergodic if and only if Uf = f for a measurable
function f implies f is constant (almost everywhere).

If T is ergodic then

lim
n→∞

∫

X

∣

∣

∣

1

n

∑n−1

k=0
Uk f − c

∣

∣

∣

2

dµ → 0,

where

c =
1

µ(X )

∫

X

f dµ.


