Math 412-501
Theory of Partial Differential Equations

Lecture 3-2:
Spectral properties of the Laplacian.
Bessel functions.
Eigenvalue problem:

\[\nabla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D, \]

\[\left(\alpha \phi + \beta \frac{\partial \phi}{\partial n} \right) \bigg|_{\partial D} = 0, \]

where \(\alpha, \beta \) are piecewise continuous real functions on \(\partial D \) such that \(|\alpha| + |\beta| \neq 0 \) everywhere on \(\partial D \).

We assume that the boundary \(\partial D \) is piecewise smooth.
6 spectral properties of the Laplacian

Property 1. All eigenvalues are real.

Property 2. All eigenvalues can be arranged in the ascending order

\[\lambda_1 < \lambda_2 < \ldots < \lambda_n < \lambda_{n+1} < \ldots \]

so that \(\lambda_n \rightarrow \infty \) as \(n \rightarrow \infty \).

This means that:
- there are infinitely many eigenvalues;
- there is a smallest eigenvalue;
- on any finite interval, there are only finitely many eigenvalues.
Property 3. An eigenvalue λ_n may be multiple but its multiplicity is finite.

Moreover, the smallest eigenvalue λ_1 is simple, and the corresponding eigenfunction ϕ_1 has no zeros inside the domain D.

Property 4. Eigenfunctions corresponding to different eigenvalues are orthogonal relative to the inner product

$$\langle f, g \rangle = \iint_D f(x, y)g(x, y) \, dx \, dy.$$
Property 5. Any eigenfunction ϕ can be related to its eigenvalue λ through the Rayleigh quotient:

$$\lambda = \frac{-\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} ds + \iint_{D} |\nabla \phi|^2 dx \; dy}{\iint_{D} |\phi|^2 dx \; dy}.$$
Property 6. There exists a sequence ϕ_1, ϕ_2, \ldots of pairwise orthogonal eigenfunctions that is complete in the Hilbert space $L_2(D)$.

Any square-integrable function $f \in L_2(D)$ is expanded into a series

$$f(x, y) = \sum_{n=1}^{\infty} c_n \phi_n(x, y),$$

that converges in the mean. The series is unique:

$$c_n = \frac{\langle f, \phi_n \rangle}{\langle \phi_n, \phi_n \rangle}.$$

If f is piecewise smooth then the series converges pointwise to f at points of continuity.
Rayleigh quotient

Suppose that $\nabla^2 \phi = -\lambda \phi$ in the domain D.

Multiply both sides by ϕ and integrate over D:

$$\iint_D \phi \nabla^2 \phi \, dx \, dy = -\lambda \iint_D |\phi|^2 \, dx \, dy.$$

Green’s formula:

$$\iint_D \psi \nabla^2 \phi \, dA = \oint_{\partial D} \psi \frac{\partial \phi}{\partial n} \, ds - \iint_D \nabla \psi \cdot \nabla \phi \, dA$$

This is an analog of integration by parts. Now

$$\oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds - \iint_D |\nabla \phi|^2 \, dx \, dy = -\lambda \iint_D |\phi|^2 \, dx \, dy.$$
It follows that

$$\lambda = \frac{- \int_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds + \iint_{D} |\nabla \phi|^2 \, dx \, dy}{\iint_{D} |\phi|^2 \, dx \, dy}.$$

If ϕ satisfies the boundary condition $\phi|_{\partial D} = 0$ or $\frac{\partial \phi}{\partial n}|_{\partial D} = 0$ (or mixed), then the one-dimensional integral vanishes. In particular, $\lambda \geq 0$.

If $\frac{\partial \phi}{\partial n} + \alpha \phi = 0$ on ∂D, then

$$- \int_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds = \int_{\partial D} \alpha |\phi|^2 \, ds.$$

In particular, if $\alpha \geq 0$ everywhere on ∂D, then $\lambda \geq 0$.
Self-adjointness

\[\int \int_D \psi \nabla^2 \phi \, dx \, dy = \int_{\partial D} \psi \frac{\partial \phi}{\partial n} \, ds - \int \int_D \nabla \psi \cdot \nabla \phi \, dx \, dy \]

(Green’s first identity)

\[\int \int_D (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dx \, dy = \int_{\partial D} \left(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} \right) \, ds \]

(Green’s second identity)

If \(\phi \) and \(\psi \) satisfy the same boundary condition

\[\left(\alpha \phi + \beta \frac{\partial \phi}{\partial n} \right) \bigg|_{\partial D} = \left(\alpha \psi + \beta \frac{\partial \psi}{\partial n} \right) \bigg|_{\partial D} = 0 \]

then \(\phi \frac{\partial \psi}{\partial n} - \psi \frac{\partial \phi}{\partial n} = 0 \) everywhere on \(\partial D \).
If ϕ and ψ satisfy the same boundary condition then
\[\int \int_D (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, dx \, dy = 0. \]

If ϕ and ψ are complex-valued functions then also
\[\int \int_D (\phi \nabla^2 \psi - \bar{\psi} \nabla^2 \phi) \, dx \, dy = 0 \]

(because $\nabla^2 \bar{\psi} = \nabla^2 \psi$ and $\bar{\psi}$ satisfies the same boundary condition as ψ).

Thus $\langle \nabla^2 \phi, \psi \rangle = \langle \phi, \nabla^2 \psi \rangle$, where
\[\langle f, g \rangle = \int \int_D f(x, y)\bar{g}(x, y) \, dx \, dy. \]
Eigenvalue problem:

\[\nabla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D, \]

\[\left(\alpha \phi + \beta \frac{\partial \phi}{\partial n} \right) \bigg|_{\partial D} = 0. \]

The Laplacian \(\nabla^2 \) is self-adjoint in the subspace of functions satisfying the boundary condition.

Suppose \(\phi \) is an eigenfunction belonging to an eigenvalue \(\lambda \). Let us show that \(\lambda \in \mathbb{R} \).

Since \(\nabla^2 \phi = -\lambda \phi \), we have that

\[\langle \nabla^2 \phi, \phi \rangle = \langle -\lambda \phi, \phi \rangle = -\lambda \langle \phi, \phi \rangle, \]

\[\langle \phi, \nabla^2 \phi \rangle = \langle \phi, -\lambda \phi \rangle = -\bar{\lambda} \langle \phi, \phi \rangle. \]

Now \(\langle \nabla^2 \phi, \phi \rangle = \langle \phi, \nabla^2 \phi \rangle \) and \(\langle \phi, \phi \rangle > 0 \) imply \(\lambda \in \mathbb{R} \).
Suppose ϕ_1 and ϕ_2 are eigenfunctions belonging to different eigenvalues λ_1 and λ_2.

Let us show that $\langle \phi_1, \phi_2 \rangle = 0$.

Since $\nabla^2 \phi_1 = -\lambda_1 \phi_1$, $\nabla^2 \phi_2 = -\lambda_2 \phi_2$, we have that

\[
\langle \nabla^2 \phi_1, \phi_2 \rangle = \langle -\lambda_1 \phi_1, \phi_2 \rangle = -\lambda_1 \langle \phi_1, \phi_2 \rangle,
\]
\[
\langle \phi_1, \nabla^2 \phi_2 \rangle = \langle \phi_1, -\lambda_2 \phi_2 \rangle = -\lambda_2 \langle \phi_1, \phi_2 \rangle.
\]

But $\langle \nabla^2 \phi_1, \phi_2 \rangle = \langle \phi_1, \nabla^2 \phi_2 \rangle$, hence

\[-\lambda_1 \langle \phi_1, \phi_2 \rangle = -\lambda_2 \langle \phi_1, \phi_2 \rangle.
\]

We already know that $\bar{\lambda}_2 = \lambda_2$. Also, $\lambda_1 \neq \lambda_2$.

It follows that $\langle \phi_1, \phi_2 \rangle = 0$.

The main purpose of the Rayleigh quotient

Consider a functional (function on functions)

\[RQ[\phi] = - \oint_{\partial D} \phi \frac{\partial \phi}{\partial n} \, ds + \iint_{D} |\nabla \phi|^2 \, dx \, dy \]

\[\frac{\iint_{D} |\phi|^2 \, dx \, dy}{\iint_{D} |\phi|^2 \, dx \, dy}. \]

If \(\phi \) is an eigenfunction of \(-\nabla^2 \) in the domain \(D \) with some boundary condition, then \(RQ[\phi] \) is the corresponding eigenvalue.

What if \(\phi \) is not?
Let $\lambda_1 < \lambda_2 \leq \lambda_3 \leq \ldots \leq \lambda_n \leq \lambda_{n+1} \leq \ldots$ be eigenvalues of a particular eigenvalue problem counted with multiplicities.

That is, a simple eigenvalue appears once in this sequence, an eigenvalue of multiplicity two appears twice, and so on.

There is a complete orthogonal system ϕ_1, ϕ_2, \ldots in the Hilbert space $L_2(D)$ such that ϕ_n is an eigenfunction belonging to λ_n.
Theorem (i) $\lambda_1 = \min RQ[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in D and satisfy the boundary condition. Moreover, if $RQ[\phi] = \lambda_1$ then ϕ is an eigenfunction.

(ii) $\lambda_n = \min RQ[\phi]$, where the minimum is taken over all nonzero functions ϕ which are differentiable in D, satisfy the boundary condition, and such that $\langle \phi, \phi_k \rangle = 0$ for $1 \leq k < n$. Moreover, the minimum is attained only on eigenfunctions.

Main idea of the proof: $RQ[\phi] = \frac{\langle -\nabla^2 \phi, \phi \rangle}{\langle \phi, \phi \rangle}$.

(see Haberman 5.6)
Spectral properties of the Laplacian in a circle

Eigenvalue problem:
\[\nabla^2 \phi + \lambda \phi = 0 \quad \text{in} \quad D = \{(x, y) : x^2 + y^2 \leq R^2\}, \]
\[u|_{\partial D} = 0. \]

In polar coordinates \((r, \theta)\):
\[\frac{\partial^2 \phi}{\partial r^2} + \frac{1}{r} \frac{\partial \phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \theta^2} + \lambda \phi = 0 \]
\[(0 < r < R, -\pi < \theta < \pi), \]
\[\phi(R, \theta) = 0 \quad (-\pi < \theta < \pi). \]
Additional boundary conditions:

\[|\phi(0, \theta)| < \infty \quad (-\pi < \theta < \pi), \]

\[\phi(r, -\pi) = \phi(r, \pi), \quad \frac{\partial \phi}{\partial \theta}(r, -\pi) = \frac{\partial \phi}{\partial \theta}(r, \pi) \quad (0 < r < R). \]

Separation of variables: \(\phi(r, \theta) = f(r)h(\theta). \)

Substitute this into the equation:

\[f''(r)h(\theta) + r^{-1}f'(r)h(\theta) + r^{-2}f(r)h''(\theta) + \lambda f(r)h(\theta) = 0. \]

Divide by \(f(r)h(\theta) \) and multiply by \(r^2: \)

\[r^2 f''(r) + r f'(r) + \lambda r^2 f(r) \frac{h''(\theta)}{h(\theta)} = 0. \]
It follows that
\[r^2 f''(r) + rf'(r) + \lambda r^2 f(r) \frac{f''(r)}{f(r)} = -\frac{h''(\theta)}{h(\theta)} = \mu = \text{const.} \]

The variables have been separated:
\[r^2 f'' + rf' + (\lambda r^2 - \mu) f = 0, \]
\[h'' = -\mu h. \]

Boundary conditions \(\phi(R, \theta) = 0 \) and \(|\phi(0, \theta)| < \infty \)
hold if \(f(R) = 0 \) and \(|f(0)| < \infty \).

Boundary conditions \(\phi(r, -\pi) = \phi(r, \pi) \) and
\(\frac{\partial \phi}{\partial \theta}(r, -\pi) = \frac{\partial \phi}{\partial \theta}(r, \pi) \)
hold if \(h(-\pi) = h(\pi) \) and
\(h'(-\pi) = h'(\pi) \).
Eigenvalue problem:

\[h'' = -\mu h, \quad h(-\pi) = h(\pi), \quad h'(-\pi) = h'(\pi). \]

Eigenvalues: \(\mu_m = m^2, \quad m = 0, 1, 2, \ldots \)

\(\mu_0 = 0 \) is simple, the others are of multiplicity 2.

Eigenfunctions: \(h_0 = 1, \quad h_m(\theta) = \cos m\theta \) and \(\tilde{h}_m(\theta) = \sin m\theta \) for \(m \geq 1 \).
Dependence on \(r \):
\[
 r^2 f'' + rf' + (\lambda r^2 - \mu) f = 0, \quad f(R) = 0, \quad |f(0)| < \infty.
\]

We may assume that \(\mu = m^2 \), \(m = 0, 1, 2, \ldots \).

Also, we know that \(\lambda > 0 \) (Rayleigh quotient!).

New variable \(z = \sqrt{\lambda} \cdot r \) removes dependence on \(\lambda \):

\[
 z^2 \frac{d^2 f}{dz^2} + z \frac{df}{dz} + (z^2 - m^2) f = 0.
\]

This is **Bessel’s differential equation** of order \(m \).

Solutions are called **Bessel functions** of order \(m \).