
Automatic logarithm and associated measures

Rostislav Grigorchuk ∗ Roman Kogan Yaroslav Vorobets

November 28, 2018

Abstract

We introduce the notion of the automatic logarithm LA,B with the purpose
of studying the expanding properties of Schreier graphs of action of the group
generated by two finite initial Mealy automata A and B on the levels of a
regular d-ary rooted tree T , where A is level-transitive and of bounded activity.
LA,B computes the lengths of chords in this family of graphs. Formally, L is
a map ∂T → Zd from the boundary of the tree to the integer p-adics whose
values are determined by a Moore machine. The distribution of its outputs
yields a probabilistic measure µ on ∂T , which in some cases can be computed
by a Mealy-type machine (we then say that µ is finite-state). We provide
a criterion to determine whether µ is finite-state. A number of examples
illustrating the different cases with A being the adding machine is provided.

1 Introduction

The maps and the measures considered in this paper arise from the study of properties
of Schreier graphs associated with automaton semigroups and groups acting on words
over a finite alphabet and regular rooted trees.

The problem of studying the distribution of lengths of chords (to be defined below)
in the graph of action of two initial automata gives rise to the automatic logarithm,
a map defined by an automaton that outputs these lengths. The distribution of the
lengths of chords is then seen as the image of the uniform Bernoulli measure by the
action of the automatic logarithm. When the automatic logarithm is invertible, the
distribution is uniform. Otherwise, the resulting distribution is an interesting object
of study. In certain cases, such distributions only have a finite number of restrictions

∗The author was supported by NSA grant H98230-15-1-0328 and by Simons Foundation Collab-
oration Grant for Mathematicians, Award Number 527814.

1

to cylinders (we call them finite-state), and we provide a sufficient condition for
this to happen, as well as examples when it does not.

Given a finite initial Mealy (or Moore) type automaton Aq over a finite alphabet

X, one can define a map Âq on the space of sequences (words) over the alphabet
X. Maps of this type usually have a very complicated dynamical nature and may
transform relatively simple measures on the space XN, like for instance Bernoulli or
Markov measure, into complicated ones. The study of such measures were initiated
in [AKP], [Ryab] and [Krav].

Given a family of finite automata Aq,Bs, . . . , Ct, using the operation of compo-
sition of automata one can generate a semigroup S = 〈Aq,Bs, . . . , Ct〉sem or even a
group G = 〈Aq,Bs, . . . , Ct〉gr if the automata are invertible. A particularly interesting
case is when the group G is generated by a family which comes from the one non-
initial invertible automaton A by using all its states for generating. Such groups are
called automaton groups (or self-similar groups) and play an important role in group
theory and areas of its applications [GB], [Nek], [GNS], [GNSunic]. They natu-
rally act by automorphisms on a d-regular rooted tree T (d is the cardinality of the
alphabet X) and on its boundary ∂T . These actions are induced by the correspond-
ing actions on the set of finite (and, respectively, infinite) words over the alphabet
X. The operation of composition of automata corresponds to the composition of the
associated maps.

Another direction of development is study of the Schreier graphs (also called
orbital graphs) given by the action of a group on levels of the tree or on its boundary
(i.e. on finite or infinite words). These graphs have self-similarity features and give
a good approximation to many important fractal sets including the Julia sets of
the rational mappings of C. There are examples of the automata given by a small
number of states that are believed to produce families of expander graphs (two of
them are considered in this article). No rigorous proof of this is known, but there are
results showing that at least these families are the so called asymptotic expanders
[GrigExp], and that the growth of their diameters is slow [PakMal] (as should be
in the case of expanders).

Among automorphisms of the rooted trees, the most famous is the adding machine
automorphism defined by the automaton shown in Figure 2a, which we denote O.
The portrait of this automorphism is shown in Figure 4. It acts on finite strings
of symbols as the addition of 1 when the strings are interepreted as the natural
numbers in the d-adic expansion (the diagram in Figure 2a is for the case of the
binary alphabet). The group G(O) is an infinite cyclic group (one of the states of
O corresponds to the identity map). If o is the nontrivial state of O, and if another
initial automaton Aa is given, then one can consider the semigroup 〈Aa, Oo〉sem (or a

2

group 〈Aa,Oo〉gr if Aa is invertible), and study its properties as well as the sequence
{Γn}∞n=1 of graphs of action on the levels n = 1, 2, . . . , n . . . of the tree (Figure 3 gives
an impression of how the graph Γn may look). The questions about combinatorial and
spectral properties of graphs {Γn} is the subject of many investigations [GBspec,
GZ, GSHanoi], and in particular, the question about the growth of the diameters
of {Γn} and about the expansion properties of the family {Γn}∞n=1 are among the
central.

In this paper we focus on study of the dynamical and combinatorial properties of
the pair (Aa,Oo). This unexpectedly leads us to the notion of the “logarithm” of Aa
with respect to the adding machine Oo, which we denote L, and which is a specially
defined map on the set of finite and infinite sequences with vales in d-adic numbers,
or words over X that represent them. Then we show that in the case of the binary
alphabet, the logarithm map can be define by a finite state automaton (Theorem 6.3)
and provide the construction for it. We then analyze the distribution of the lengths
of the “chords” (again we appeal to Figure 3 which gives an impression of what
we mean by the chord). This leads us to the considerations started in the [Krav,
GKV1] about the nature of the image of the Bernoulli (or, more generally, Markov)
measure under the automaton map, in the case the map is given by the “logarithm”
automaton L. The distribution of the chords is given by the image µ = L∗(ν) of the
uniform Bernoulli measure ν on XN, which in some important cases (for instance,
given in the Example 8.5 and Theorem 8.6) is a Markov measure, but in some other
interesting cases (like the Example 8.7) is a more complicated type of measure.

To study µ, we introduce the notion of the automaton associated with a measure,
the notion of a finite state measure, of a self-similar measure, and show that Markov
measure is a finite state measure, but not every finite state measure is Markov.
Multiple examples illustrating the definitions and results are provided (we mark the
ends of examples with 4 instead of the traditional �).

2 Preliminaries

2.1 Endomorphisms of rooted trees

By a finite alphabet X of size d, we mean a finite set of cardinality d. We will
usually use the following alphabets: the sets {0, 1, . . . , d − 1}, and finite subsets
X ⊂ [0, 1] (in the latter case, the values of the real numbers constituting X will be
important in addition to its cardinality).

For a word w in X, |w| denotes its length, and wi denotes the i’th character for
0 ≤ i ≤ |w| − 1. The numbering of characters starts from 0, so w = w0w1 . . . w|w|−1.

3

If v is another word (or a character), wv is the concatenation of the two.
X∗ denotes all finite words over X:

X∗ := {a0 . . . an−1 : ai ∈ X,n ∈ N ∪ {0}}

Let T be a rooted graph with the vertex set V = X∗, edge set F = {(w,wa) :
w ∈ X∗, a ∈ X}, and the root being the empty word. This graph is a d-regular
rooted tree.

The n’th level Xn of the tree T is the set of words of length n.
An endomorphism of the rooted tree T is a map g from X∗ to itself that pre-

serves the levels and maps adjacent vertices to adjacent vertices. An automorphism
is an invertible endomorphism.

The boundary of the tree T is the set XN of infinite sequences in X:

∂T := {a0a1a2 . . . : ai ∈ X, i ∈ N}

∂T is supplied with the Tychonoff product topology that makes it homeomorphic to
a Cantor set. Geometrically, the boundary can be viewed as a set of geodesic paths
starting at the root and going to infinity.

Let σr denote the operation that deletes the last character of a word: for w ∈ X∗
and a ∈ X, σr(wa) := w. Then ∂T can be obtained as the inverse limit of the
directed system of levels {Xn : n ∈ N} with the projections ψm,n : Xn → Xm given
by ψm,n := σn−mr (i.e., discarding the last n−m characters).

2.2 Mealy and Moore machines

Definition 2.1 A Mealy machine, or a finite initial automaton with out-
put, is a hextuple Aq = (S, q,X, Y, π, λ), where

• X is a (finite) input alphabet;

• Y is a (finite) output alphabet;

• S is a (finite) set of states;

• q ∈ S is the initial state;

• π : S ×X → S is the transition map

• λ : S ×X → Y is the output map

4

When the initial state of the automaton is understood from the context, we drop
the subscript and write A instead of Aq to denote it.

We write πs, λs for restrictions of these functions to the state s, defining πs(x) :=
π(s, x) and λs(x) := λ(s, x).

The functions π and λ also act on words in the alphabet X via the following
recursive relations (for x ∈ X, w ∈ X∗):

π(s, xw) := π(π(s, x), w);

λ(s, xw) := λ(s, x)λ(π(s, x), w).

In the same way, πs and λs, for s ∈ S, act on words w ∈ X∗. Additionally, we
may write π(w) for πq(w) (and similarly, λ(w) for λq(w)), when the initial state q
is understood from the context.

The diagram of an automaton Aq is a labeled graph with the vertex set S, edge set
E = {(s, π(s, x)) : s ∈ S, x ∈ X}, with label x : λ(s, x) on the edge (s, π(s, x)).
The initial state q is marked with a special arrow (which doesn’t start at a state).
An example of such diagram for the Lamplighter automaton is shown in Figure 1b.

a

0

b

1
0

1

(a) Diagram with element of the symmet-
ric group on vertices

a

0|1

b1|0
0|0

1|1

(b) Diagram with output marked on
edges

Figure 1: Two ways to draw the Lamplighter automaton

An automaton A is invertible if λs is invertible for all s ∈ S (that is, if λs ∈
S(X), where S(X) is the symmetric group on X). The endomorphism g given by an
invertible automaton A is invertible, and the automaton for g−1 (which we denote
as A−1) can be constructed from the diagram of A by flipping the input and output
on the edges.

In the case when an automaton is invertible, we can draw the diagram of the
automaton without specifying its output on the arrows. Instead, the state s is marked
by the element of the symmetric group λs ∈ S(X). If λs is the trivial permutation,
we call the state s passive, and call it active otherwise.

5

When X = {0, 1}, we write σ for the nontrivial permutation of X (i.e. σ(0) =
1, σ(1) = 0). In the diagrams of automata over X = {0, 1} we then mark active
states with σ, leave the label of passive states blank. Figure 1a shows how to draw
the Lamplighter automaton of Figure 1b in this way. A few more examples of such
diagrams are in Figure 2, and further throughout this paper.

(a) Adding machine, also fea-
tured in Figure 4 (b) automaton F (c) automaton Z

Figure 2: Diagrams of invertible automata

Unless otherwise specified, we assume X = Y everywhere in this text, and write
an automaton Aq = (S, q,X, π, λ).

An automaton state q acts on X∗, the d-ary tree T , and its boundary ∂T by the
action of Aq. We shall use A and q interchangeably for this action when the context
is clear.

Definition 2.2 The graph of the action of an initial automaton Aq = (S, q,X, π, λ)
on an invariant subset S ⊂ V (T) is the directed graph with vertex set S and edges
w → λq(w) for w ∈ S. The graph of action of automata A1q1 ,A2q2 , . . . ,Akqk on
S is similarly defined as a directed graph with vertex set S and edges w → λiqi(w),
1 ≤ i ≤ k and w ∈ S.

In this paper, we consider graphs of action on level n of two automata, O and
A, with O being the adding machine (Figure 2a). Figure 3 shows examples of such
graphs for A being automaton Z (Figure 2c) and A being automaton F (Figure 2b).

Definition 2.3 A Mealy automaton is said to be a Moore machine when the
output does not depend on the last character of the input. That is, for all s ∈ S, λs
is constant: for all x, y ∈ X, λ(s, x) = λ(s, y). In this case, we simply write λ(s) for
the value λs takes.

Remark 2.4 In this definition, the output only depends on the current state s. Some
authors use the definition of a Moore machine with a shift, where the output is
determined by the ending state π(s, x), and so does depend on the input.

6

00000

10000

O

11111

a

01000

aO

01010

11010

O

10110

a

00110

a
O

O

11001

a

01110

aO

11110

O

10001

a

00001

aO
a

O

01001

aO

O

10101

a

00101

aO

11000

O

10100

a

O

11011

a

01101

a

O

11101

O

10011

a

00011

a

O

O

11100

a

01011
a

O

O

10111

a
00111

a

O

O

a

01111

a

O

00100

a O

a

O

aO

a O

01100

a
O

O
10010

a

00010 a
O

a

O

a

O

(a) The graph of action of adding machine
and automaton Z

00000

10000

O

10101

a

01000

O

01111

a

01010

11010

O

11111

a

00110

O

00001

a

a

10110

O

01110

O

01011

a

11110

O

11000

a

O

00101

a

10001

O

10100

a

a

01001

O

11001

O

11100

a

O

00011

a

11101

a

O

O

10010

a

a

01101

O

a

O

O

00111

a

a

10011O

a O

a

11011

O

a

O

a

10111

O

a

O

00100

O

00010

a

a

O

O

a

a

O

a

01100

O

a

O

a

O

a

O

O a

(b) The graph of action of adding machine
and automaton F

Figure 3: Examples of Schreier graphs

Mealy automata A and B are said to be equivalent if A(w) = B(w) for all
w ∈ X∗.

Definition 2.5 An initial Mealy automaton A is said to be minimal if it has the
smallest number of states among all the automata in its equivalence class.

Minimality is a classical notion, as is the algorithm that produces the minimal
automaton in a given class; see [sholomov] for a discussion of this algorithm (refer
to [GNS] for a discussion of this equivalence and a minimization algorithm in the
more general case of asynchronous Mealy machines).

Given automata A and B such that the output alphabet of A coincides with the
input alphabet of B, one can construct the product automaton, denoted A · B,
which computes the composition A◦B. We again refer to [GNS] for the construction
of the product automaton.

2.3 Sections of tree endomorphisms

Definition 2.6 Let g be an endomorphism of a d-regular rooted tree T , and let w be
a finite word. A section of g by w, denoted g|w, is an endomorphism h of T such
that for any word or sequence v, g(wv) = g(w)h(v).

7

......

Figure 4: The adding machine and its portrait

Remark 2.7 a finite automaton A has only finitely many sections, which correspond
to states in the connected component of the starting state in the diagram of the
automaton A. More specifically, when g is given by a Mealy machine Aq, g|w = Ag(w).

With an invertible tree endomophism g we can associate a portrait diagram that
uniquely determines g. For a finite word w, g|w acts on X by a permutation when g
is invertible. The portrait consists of the infinite tree T with markings on the nodes:
node corresponding to word w is marked with the permutation of X induced by g|w.
When |X| = 2, we only mark nodes with the nontrivial permutation and leave others
unmarked.

Example 2.8 The portrait of the adding machine of Figure 2a is shown in Figure
4. 4

Every tree automorphism has a portrait, but not all tree automorphisms are given
by finite automata. To any tree endomorphism g we can associate a (possibly infinite)
automaton A = (S, g,X, π, λ) with the initial state labeled by g, such that the action
of A is identical to the action of g. We take S = {g|w : w ∈ XN} ∪ {g}, and define
π(h, x) := h|x; λ(h, x) = h(x). This automaton of restrictions, in general, need not
be finite. When it is finite, the tree automorphism g is said to be finite-state.

Remark 2.9 An automorphism g of the tree T is finite-state if and only if its por-
trait contains a finite number of distinct (up to isomorphism of marked trees) subtrees.
The subtrees in the portrait diagram define sections of g.

We now prove several basic propositions related to sections of automorphisms
which we use in subsequent chapters. These statements are well-known, but we
include them for the reader’s convenience.

8

Proposition 2.10 If an endomorphism g is invertible, then all of its sections are
invertible, and for w ∈ X∗, (g|w)−1 = g−1|g(w).
Proof. Let w ∈ X∗ and v ∈ XN. Then by definitions,

wv = g−1(g(wv))

= g−1(g(w)g|w(v))

= g−1(g(w))g−1|g(w)(g|w(v))

= wg−1|g(w)(g|w(v)).

Therefore g−1|g(w)(g|w(v)) = v, and the proposition holds. �

Proposition 2.11 Let g be a tree endomorphism. Then for all w, v finite words w, v
over X g|wv = (g|w)|v.
Proof. For any word u,

g(wvu) = g(w)g|w(vu) = g(w)g|w(v)(g|w)|v(u) = g(wv)(g|w)|v(u).

The proposition holds by definition. �

Proposition 2.12 Let g and h be tree endomorphisms. Then for all finite words w
over X, (gh)|w = g|h(w)h|w.

Proof. Let v be a finite word. By the definition of section,

gh(wv) = g(h(w)h|w(v))

= g(h(w))g|h(w)hw(v),

so (gh)|w = g|h(w)hw. �

Corollary 2.13 Let g, h be tree endomorphisms. Then for any finite words w and
v, (gh)|wv = g|h(wv)h|wv = g|h(w)h|w(v)(h|w)|v.
Proposition 2.14 gn|w = g|gn−1(w)g|gn−2(w) . . . g|g(w)g|w.

Proof. The result holds trivially when n = 1. By Proposition 2.12,

gn|w = (g ◦ gn−1)|w
= g|gn−1(w)(g

n−1|w).

The result follows by induction. �

Proposition 2.15 Assume g acts transitively on levels, |w| = n, and a ∈ X. Then
g2

n|w(a) 6= a.

Proof. If g2
n|w(a) = a, then wa, a word of length n + 1, is a fixed point of g2

n
,

contrary to the assumption that the length of the orbit of g on words of length n+ 1
is 2n+1.

9

2.4 Automata with bounded activity

Definition 2.16 An automaton A is said to have bounded activity if the number
of nontrivial sections on every level is bounded by a global constant c:

∃c : ∀n ∈ N : |{A|w : A|w 6= 1, w ∈ Xn}| < c.

Example 2.17 The adding machine in Figure 2a has bounded activity.
This automaton can also be defined by the portrait in Figure 4, in which case it

is clear that there is only one nontrivial section on every level. 4

The following proposition shows that the set of sections of powers of a bounded-
activity automaton is finite if the powers are bounded by the number of words on
the corresponding level. This fact is used to show Theorem 6.3.

Proposition 2.18 If A is a tree endomorphism given by a finite Mealy automaton
A which is of bounded activity and acts transitively on levels, then the set

TA := {An|w : w ∈ X∗, n ≤ 2|w|}

is finite.

Proof. by Proposition 2.14,

TA := {A|An−1(w)A|An−2(w) . . . A|A(w)A|w : w ∈ X∗, n ≤ 2|w|}.

For a given w, consider a sequence of words w,A(w), A2(w), . . . , An−1(w) with
n ≤ 2|w|. By level transitivity of the action of A, all elements in it are distinct words
of length |w|, and thus this sequence is a subset of vertices on level |w|.

Since A is of bounded activity, there is a constant c such that at most c sections
on every level are nontrivial. Hence the product

A|An−1(w)A|An−2(w) . . . A|A(w)A|w

contains at most c nontrivial factor. Since A is finite-state by assumption, its nontriv-
ial sections are enumerated by the finite set of states SA ofA. Therefore, |TA| ≤ |SA|c.
�

10

2.5 Measure-theoretic definitions

We now give a few definitions relevant to probability theory and ergodic theory.
A cylinder set wXN is a clopen subset of XN given by

wXN := {wv : w ∈ X∗, v ∈ XN}.

A probability vector p is a a vector p : X → [0, 1] with Σi∈Xp(i) = 1. A
stochastic matrix on X is a matrix M : X×X → [0, 1] whose rows are probability
vectors.

Definition 2.19 The Bernoulli measure on XN defined by a probability vector p
is given on the cylinders wXN by

µ(wXN) :=
|w|−1∏
i=0

p(wi),

and extended by the additivity properties on all Borel sets. The uniform Bernoulli
measure is given by p =

(
1
|X| , . . . ,

1
|X|

)
.

Informally, this measures probability of a sequence of independent events (e.g.
coin flips).

Definition 2.20 The Markov measure defined by a probability vector l = (lx)
of length |X| and a stochastic matrix L = (Lx,y) of size |X| × |X| is given on the
cylinder sets wXN by

µ(wXN) := l(w0)
|w|−1∏
i=1

Lwi−1,wi
.

Informally, this measures the probability of events where the probability of an
outcome may depend on what the preceding outcome was.

2.6 Sections of a measure

Definition 2.21 The null measure ν0 (or the trivial measure) ν0 is the measure
given by ν0(E) = 0 for all measurable sets E.

Definition 2.22 Suppose µ is a probability measure on XN. If µ(wXN) 6= 0, then
the section of µ by the word w ∈ X∗, denoted µ|w, is the probability measure on XN

uniquely defined by

µ|w(vXN) :=
µ(wvXN)

µ(wXN)

for all v ∈ X∗. In the case µ(wXN) = 0, we let µ|w be the null measure.

11

The section µw can be seen as the conditional probability given w.
For convenience, we also define sections for null measures: if µ is null, µ|w = 0

for all words w.
We say a word w is admissible (with respect to µ) if the section of µ by w is

nontrivial (i.e. µ(wXN) 6= 0). We say a word w is forbidden if it is not contained
in any admissible word.

Now we describe how to compute sections of measures.

Proposition 2.23 µ|wv = (µ|w)|v for all words v, w ∈ X∗.

Proof.
First, suppose wv is not admissible, i.e. µ(wvXN) = 0. Then either w is also not

admissible, or w is admissible relative to µ, but v is not admissible relative to µ|w.
Either way, (µ|w)|v is the null measure, and the proposition holds.

Now assume µ(wvXN) 6= 0; then µ(wvXN) 6= 0. For any word u ∈ X∗ we obtain

(µ|w)|v(uXN) =
µ|w(vuXN)

µ|w(vXN)

=
µ(wvuXN)

µ(wXN)µ|w(vXN)

=
µ(wvuXN)

µ(wvXN)

= µ|wv(uXN). �

Corollary 2.24 Let µ =
k∑
i=1

aiµi, where ai ≥ 0 and µi are probability measures. The

for any admissible word w,

µ|w =
1

µ (wXN)

k∑
i=1

aiµi
(
wXN

)
µi|w.

Proof. For any word v ∈ X∗,

µ|w
(
vXN

)
=

1

µ (wXN)

k∑
i=1

aiµi
(
wvXN

)
=

1

µ (wXN)

k∑
i=1

aiµi
(
wXN

)
µi|w

(
vXN

)
. �

12

3 Finite-state measures

Definition 3.1 A measure µ is finite-state if admits only finitely many distinct
sections.

Example 3.2 Bernoulli and Markov measures (definitions 2.19 and 2.20, respec-
tively) are finite-state:

• any Bernoulli measure µ has only one (nontrivial) section: µ|w = µ whenever
w is admissible. Indeed, let p be the defining probability vector,

µ|w(vXN) =
µ(wvXN)

µ(wXN)

=

∏|w|−1
i=0 p(wi)

∏|v|−1
j=0 p(vj)∏|w|−1

i=0 p(wi)

=
|v|−1∏
j=0

p(vj) = µ(vXN).

Note that if p(x) = 0 for some x ∈ X, then words w containing x are not
admissible. Conversely, if p is positive, then all words are admissible.

• a Markov measure µ has at most |X| + 1 nontrivial sections: µ (section by
the empty word) and µ|x for x ∈ X. This is because for all admissible words
w ∈ X∗ and all x ∈ X, µ|wx = µ|x. Indeed, assuming w is not the empty word,
we obtain

µ|wa(vXN) =
µ(wavXN)

µ(waXN)

=

(
l(w0)

∏|w|−1
i=1 L(wi−1, wi)

)
L(w|w|−1, a)

(
L(a, v0)

∏|v|−1
j=1 L(vj−1, vj)

)
(
l(w0)

∏|w|−1
i=1 L(wi−1, wi)

)
L(w|w|−1, a)

= L(a, v0)
|v|−1∏
j=1

L(vj−1, vj)

=
l(a)L(a, v0)

∏|v|−1
j=1 L(vj−1, vj)

l(a)

=
µ(avXN)

µ(aXN)

= µ|a(vXN).

13

4

Definition 3.3 A k-step Markov measure is a measure µ such that for all words
v ∈ X∗ of length k and all words w ∈ X∗, µ|wv = µ|v whenever wv is admissible.

Informally, this measures the probability of events where the probability of an
outcome may depend on what the preceding k outcomes was.

Remark 3.4 A Markov measure is a 1-step Markov measure. A k-step Markov

measure on XN with |X| = d is finite-state with at most
dk+1 − 1

d− 1
sections.

Indeed, a finite d-tree of depth k+1 has 1+d+d2+ . . .+dk = dk+1−1
d−1 nodes, which

encode all words of length not exceeding k. By definition, every nontrivial section of
a k-step Markov measure is a section by one of these words. �

Definition 3.5 To any finite-state measure µ we associate an automaton Aµ as
follows.

Let µ1, . . . , µn be the distinct sections of µ. Consider an automaton Aµ with
input alphabet X, output alphabet Y ⊂ [0, 1], state set S = {µ1, . . . , µn}, initial state
s0 = µ ∈ S, and transition and output functions defined by

π(µi, a) := µi|a; (1)

λ(µi, a) := µi(aX
N).

We say that Aµ determines the measure µ.

Proposition 3.6 The automaton Aµ uniquely determines µ as follows: for any in-
put word w ∈ X∗, the output word Aµ(w) = p0p1 . . . p|w|−1 is a sequence of real
numbers whose product is µ(wXN):

µ(wXN) =
|w|−1∏
i=0

(Aµ(w))i. (2)

Proof. The proposition holds for when |w| = 1 by construction; assume it holds for
all words of length k. Consider an arbitrary word w = w0w1 . . . wk of length k. Then
applying the inductive hypothesis, and then applying Proposition 2.23 k times, we
obtain:

k∏
i=0

pi = µ(w0w1 . . . wk−1X
N) · ((. . . (µ|w0)|w1)|w2) . . .)|wk−1

(wkX
N)

= µ(w0w1 . . . wk−1X
N)µ|w0w1...wk−1

(wkX
N)

= µ(w0w1 . . . wkX
N) = µ(wXN),

14

which completes the inductive step. �
Note that if µi is a section of µ, then the automaton defining µi can be obtained

from Aµ by changing the initial state to µi and possibly dropping some states (as
some sectinos of µ might not be sections of µi).

Definition 3.7 Suppose µ is a finite-state measure that admits a trivial section. We
call the corresponding state of the defining automaton Aµ trivial.

Refer to Example 3.14 for an automaton with a trivial state; for example, the
state µ|11 in Figure 8a is trivial.

Remark 3.8 Given a finite-state measure µ, the automaton defined in 1 is minimal
and contains at most one trivial state.

Example 3.9 The automaton computing a Bernoulli measure on {0, 1}N defined by
a positive probability vector p = (p(0), p(1)) is depicted in Figure 5a. 4

Example 3.10 The automaton computing a Markov measure on {0, 1}N defined by
a positive probability vector l = (l(0), l(1)) and a positive probability matrix L = (Lij)
is depicted in Figure 5b. 4

Example 3.11 Figure 6 shows a general 2-step Markov measure on {0, 1}N. Such a
measure is determined by a probability vector p, a stochastic matrix q and a probability
tensor M (Mijk gives the probability of k given ij). 4

Similarly to tree automorphisms, we define the portrait of the measure µ to
be the diagram consisting of the marked tree T , where the node corresponding to a
word w is marked with the values µ|w takes on cylinders xXN, x ∈ X. A portrait
defines a measure uniquely.

When dealing with probability measures, it is often convenient to consider the
vector pw :=

(
µ|w(x0X

N), . . . , µ|w(xd−1X
N
)

up to scaling. Since
∑d−1
i=0 µ(xiX

N) = 1,

the proportion pw0 : pw1 : . . . : pwn−1 ∈ RP d−1 determines the values of µ on
X unambiguously. We then use the proportion as the corresponding label in the
portrait.

Example 3.12 The uniform Bernoulli measure on a binary alphabet has one section
whose proportion is 1 : 1. Its portrait is shown in Figure 7. 4

15

(a) Diagram of the automaton com-
puting a Bernoulli measure

(b) Diagram of the automaton computing a Markov
measure

Figure 5: Automata determining a Bernoulli and a Markov measure on {0, 1}N

Remark 3.13 As with automorphisms, one can draw the portrait of any probability
measure on the space XN, but not all probability measures are finite-state.

Again, as with automorphisms, even small automata define interesting finite-state
measures.

It should be noted that even small automata define interesting finite-state mea-
sures.

Example 3.14 The measure µ defined by the automaton in Figure 8a is a 2-step
Markov measure on Ω = {0, 1}N that is not a 1-step Markov measure on Ω. It
is supported on the Fibonacci subshift, which is the (shift-invariant) subset of
Ω consisting of all sequences that do not contain consecutive 1’s. The number of
nontrivial sections of µ by words of length n− 1 is the n’th Fibonacci number as can
be seen in the portrait of µ shown in Figure 8b (to simplify the figure, we omitted the
subtrees corresponding to the null measure). 4

16

Figure 6: Automaton defining a general 2-step Markov measure on {0, 1}N

4 Images of finite-state measures under tree au-

tomorphisms

Given a finite-state measure µ and a tree automorphism g, we consider the pushfor-
ward measure g∗µ defined by g∗µ(E) = µ(g−1(E)) for all measurable sets E. We say
that g∗µ is the image of µ under (the map) g.

The following proposition is useful for constructing the automata of finite-state
measures which are images under automaton automotphisms.

Proposition 4.1 Let A = (X,S, s0, π, λ) be a Mealy automaton with initial state
s0 = g acting on T , and let ν be a probability measure on ∂T . Then for x ∈ X,

(g∗ν)(xXN) =
∑

y∈λ−1
g (x)

ν(yXN);

(g∗ν)|x =

∑
y∈λ−1

g (x)

ν(yXN)πg(y)∗(ν|y)

∑
y∈λ−1

g (x)

ν(yXN)
.

where πg(x) := π(g, x) and λg(x) := λ(g, x).

Proof. Note that for a word w ∈ X∗,

g−1(xwXN) =
⊔

y∈λ−1
g (x)

yπg(y)−1(wXN).

17

1:1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

1:1

1

1:1

0

Figure 7: Portrait of the uniform Bernoulli measure up to level 5

By definition,

(g∗ν)|x(wXN) =
(g∗ν)(xwXN

(g∗ν)(xXN)

=
ν(g−1(xwXN)

ν(g−1(xXN))

=

∑
y∈λ−1

g (x)

ν(yXN)ν|y
(
πg(y)−1(wXN)

)
∑

y∈λ−1
g (x)

ν(yXN)ν|y
(
πg(y)−1(XN)

)

=

∑
y∈λ−1

g (x)

ν(yXN)πg(y)∗(ν|y)(wXN)

∑
y∈λ−1

g (x)

ν(yXN)
. �

Corollary 4.2 When g is as in Prop. 4.1, and ν is a Bernoulli measure given by
probability vector p, then its image under g satisfies

(g∗ν)|x =

∑
y∈λ−1

g (x)

p(y)πg(y)∗(ν)

∑
y∈λ−1

g (x)

p(y)
.

In particular, when ν is uniform Bernoulli, (g∗ν)(xXN) = |λ−1g (x)|/|X|, and

(g∗ν)|x =
1

|λ−1g (x)|
∑

y∈λ−1
g (x)

πg(y)∗(ν).

18

(a) 2-step Markov measure µ on {0, 1}N

1:1

1:1

0 1

1:1

0 1

1:1

0

1:1

0 1 1

1:1

0

1:1

0

1:1

0 1

1:1

01

1:1

0

1:1

0

1:1

0 1

1:0

1:0

1:0

1:0

1:0 1:0 1:0

(b) Portrait of µ up to level 5

Figure 8: A finite-state measure supported on the Fibonacci subshift

When ν is uniform Bernoulli, its pushforwards by invertible endomorphisms are also
uniform Bernoulli:

Proposition 4.3 When ν is uniform Bernoulli and g is invertible, g∗ν = ν.

Proof. For w ∈ X∗,

g∗ν(wXN) = ν(g−1(wXN) = ν(g−1(w)XN) = |X|−|w| = ν(wXN). �

5 Log map

Let A be an automorphism of the d-regular rooted tree T that acts transitively on
each level. Recall that level n of the tree consists of dn words of length n. Hence
for any pair of words w1, w2 of length n, there is a unique integer k, 0 ≤ k ≤ dn − 1
such that Ak(w1) = w2. Furthermore, if Ak(w1) = Ak

′
(w1) for some integers k and

k′, then k ≡ k′ mod dn.

19

Definition 5.1 For any n ≥ 1, the displacement function dA,n : Xn × Xn →
Z/dnZ is defined on pairs of words w1, w2 of length n by

dA,n(w1, w2) := [k]dn ,

where Ak(w1) = w2 and [k]dn ∈ Z/dnZ is the equivalence class mod dn. We write [k]
when n is understood from the context.

Definition 5.2 For any integers m and n, 1 ≤ m ≤ n, the natural projection
φm,n : Z/dnZ → Z/dmZ is defined by φm,n([k]dn) := [k]dm. These functions are
homomorphisms of rings.

The functions dA,n for different values of n are compatible with each other with
respect to the natural projections.

Proposition 5.3 Suppose |w1| = |w2| = n and a, b ∈ X. Then

φn,n+1(dA,n+1(w1a, w2b)) = dA,n(w1, w2).

Proof: Let dA,n(w1, w2) = [k] so that Ak(w1) = w2, with 0 ≤ k ≤ dn − 1. Let
a′ = Ak|w1(a). Then Ak(w1a) = w2a

′. Note that

Ad
n+k

(w1a) = Ad
n

(w2a
′)

= Ad
n

(w2)A
dn|w(a′).

By Proposition 2.15,

Ad
n|w(a′), A2dn|w(a′), . . . , A(k−1)dn|w(a′),

are all distinct. Since |X| = d, this implies Atd
n|w(a′) = b for some t, 0 ≤ t ≤ d− 1.

Thus Atd
n+k(w1a) = w2b, whence dA,n+1(w1a, w2b) = [k + tdn].

Since φn,n+1([k + tdn]) = [k], the proposition holds. �.
In addition to the tree endomorphism A, let us consider a tree endomorphism B.

Definition 5.4 For any n ≥ 1, LogA,n(B) : Xn → Z/dnZ is a function which
calculates the displacement of a word w of length n along the orbit of A under the
action of B:

LogA,n(B)(w) := dA,n(w,B(w)).

Note that for any word w of length n, ALogA,n(B)(w) = B(w), which motivates
the name “logarithm” for this function.

20

Corollary 5.5 For any word w of length n and character x ∈ X,

φn,n+1(LogA,n+1(B)(wa)) = LogA,n(B)(w).

In other words, the displacement of wa by B along the orbit of A is either the
same as displacement of w or differs from it by a multiple of dn.

Corollary 5.6 For any integers m and n, 1 ≤ m < n, the following diagram com-
mutes:

Xn σn−mr > Xm

Z/dnZ

LogA,n(B)
∨ φm,n

> Z/dmZ

LogA,m(B)
∨

Here, σr is the operator that trims the word, deleting the least letter: σ(wa) = w for
any word w and a character a ∈ X.

Proof. This follows from Corollary 5.5 by induction on n−m. �
Let Zd be the inverse limit of the directed system

Z/dnZ
φm,n

> Z/dmZ

(for m,n ∈ N). Zd comes with a natural structure of a ring, and is known as the
ring of the d-adic integers (note that d need not be prime).

Since the boundary of the tree ∂T can also be seen as the inverse limit of the
directed system

Xn σ
n−m
r > Xm,

Corollary 5.6 implies that there exists a unique function LogA(B) : ∂T → Zd, which
restricts to LogA,n(B) on level n for all n.

Definition 5.7 The logarithm LogA(B) is the inverse limit

LogA(B) = lim←−
n

LogA,n(B).

That is, it is the unique function LogA(B) : ∂T → Zd that makes the following
diagram commute:

∂T
πn

> Xn

Zd

LogA(B)
∨ πn

> Z/dnZ

LogA,n(B)
∨

(πn are the natural projections of the corresponding inverse limits).

21

Any positive integer N admits a unique d-ary expansion

N =
k∑
i=0

aid
i,

where each 0 ≤ ai ≤ d− 1. This way, the set Z/dnZ can be identified with the set of
words of length n over the alphabet X. Consequently, the set Zd can be identified
with infinite words in alphabet X, which, in term, are identified with the boundary
of the tree ∂T . Therefore, LogA,n(B) can be seen as a transformation of the n’th
level, and LogA(B) can be regarded as a transformation of ∂T .

Proposition 5.8 There exists an endomorphism of the tree T such that LogA,n(B)
is the restriction of the endomorphism to level n, and LogA(B) is the action of the
endomorphism on the boundary ∂T .

Proof. Let L : X∗ → X∗ be the transformation that coincides with LogA,n(B) on
level n for all n. By construction, L preserves the levels. Corollary 5.5 implies that L
maps adjacent vertices of T to adjacent vertices. Therefore, L is an endomorphism.
By Definition 5.7, the action of L on the boundary ∂T is exactly LogA(B). �

In the rest of the paper, we deal with d = 2, and so identify (and use interchange-
ably) the dyadic numbers and infinite binary sequences (elements of ∂T).

Remark 5.9 The construction of the logarithm map LogA(B) (including Proposition
5.8) can be extended from d-regular trees to spherically homogeneous trees (defined
in, e.g., [BORT]).

6 The automaton computing the Log map

Here and onwards we assume that X = {0, 1}, that is, T is the binary rooted tree.
Let A be an automorphism of the tree that acts transitively on each level, and

let B be an endomorphism. In light of Proposition 5.8, the Log map LogA(B) can
be regarded as an endomorphism of T .

To simplify notation, we will denote by Log both LogA(B) and LogA,n(B).
In this section we construct an automaton which computes this endomorphism.
We further assume that the automorphism A is of bounded activity (in the sense

of Definition 2.16). An example of such endomorphism is the adding machine, whose
automaton is shown in Figure 2a.

Remark 6.1 Any tree automorphism that acts transitively on levels is conjugate to
the adding machine.

22

The assumption that A is of bounded activity allows us to prove the following
lemma, which will be useful in the construction of the automaton for Log.

Lemma 6.2 If A, B are tree endomorphisms given by finite automata, A is of
bounded activity and acts transitively on all levels, then the set SA,B consisting of
triples of sections:

SA,B := {(B|w, Ad(w)|w, A2|w||w) : w ∈ X∗}

is finite.

Proof. By Proposition 2.18, the set

TA := {An|w : w ∈ X∗, n ≤ 2|w|}

is finite. Note that Ad(w)|w, A2|w||w ∈ TA for all w ∈ X∗. Let SB be the set of states
of the automaton of B. Then

|SA,B| ≤ |SB| · |TA|2. �

The set SA,B is going to be the set of states of our automaton. See Example 6.5
for an explicit computation of SA,B.

Theorem 6.3 Let A, B be as above. Consider the automaton L = LA,B with set of
states SA,B, initial state (B,1, A) (where 1 is the identity automorphism), transition
function π defined by

π((β, γ, δ), a) := (β′, γ′, δ′),where

β′ = β|a

γ′ =

γ|a if β(a) = γ(a);

(γδ)|a, otherwise;

δ′ = δ2|a

and the output function λ given as follows:

λ((β, γ, δ), a) :=

0, if β(a) = γ(a);

1, otherwise.

23

Then the transition function is well-defined, and the automaton L outputs LogA,n(B)
as a dyadic integer:

LogA,n(B)(w) =
|w|−1∑
i=0

L(w)i2
i, (3)

where n = |w|, LogA,n(B) is the displacement function in Definition 5.4, and L(w)i
is the i’th character of the word L(w).

Proof. We first show that upon reading a word w, the automaton L ends up in the
state (

B|w, Ad(w)|w, A2|w| |w
)
∈ SA,B.

This hypothesis holds for the empty word. We proceed by induction on |w|.
Assume the hypothesis holds for all |w| ≤ n.
To prove the inductive hypothesis for words of length n + 1, let |w| = n and

a ∈ X, and assume that L is in the state (β, γ, δ) after reading w. We show that

(β′, γ′, δ′) := π((β, γ, δ), a) =
(
B|wa, Ad(wa)|wa, A2|wa| |wa

)
.

Indeed:

1. β′ = βa by definition, and

B|wa = (B|w)|a (by Proposition 2.11)

= βa

= β′.

2. Note that A2|w|(w) = w by transitivity of A. By definition, δ′ = δ2|a = δ|δ(a)δ|a.
Now

A2|wa| |wa = A2|w|+1 |wa
= (A2|w|)2|wa
= A2|w| |

A2|w| (wa)
A2|w| |wa (by Proposition 2.12)

= A2|w| |
A2|w| (w)A2|w| |w(a)

(A2|w||w)|a

= A2|w| |wδ(a)δ|a (by Proposition 2.11, inductive assumption, and A2|w| = w)

= (A2|w||w)|δ(a)δ|a
= δ|δ(a)δ|a
= δ′.

24

3. Let d(w) := LogA,n(B)(w). By definition of LogA,n(B), B(w) = Ad(w)(w).
Note that

B(wa) = B(w)B|w(a) = Ad(w)(w)β(a);

Ad(w)(wa) = Ad(w)(w)Ad(w)|w(a) = Ad(w)(w)γ(a).

If β(a) = γ(a), then B(wa) = Ad(w)(wa), and thus d(wa) = d(wa) = d(w) by
definition of d = LogA,n(B). Otherwise, d(wa) = d(w) + 2|w| since this is the
only other possibility. Therefore,

Ad(wa) =

Ad(w), if β(a) = γ(a);

Ad(w)A2|w| , otherwise.

Now we compute:

Ad(w)|wa = (Ad(w)|w)|a
= δ|a;

Ad(w)A2|w| |wa = Ad(w)|
A2|w| (wa)

(A2|w||w)|a
= Ad(w)|

A2|w| (w)A2|w| |w(a)
δ|a

= Ad(w)|wδ(a)δ|a
= (Ad(w)|w)|δ(a)δ|a
= γ|δ(a)δ|a
= (γδ)|a

Therefore

Ad(wa)|wa =

γ|a if β(a) = γ(a);

(γδ)|a otherwise.

This matches the definition of γ′, and thus γ′ = Ad(wa)|wa.

In particular, we have verified that the transition function π is well-defined, since
its values are always in the set SA,B.

This completes the proof of the hypothesis that the automaton is in state
(
B|w, Ad(w)|w, A2|w| |w

)
after reading w.

Furthermore, we observed that

d(wa) =

d(w), if β(a) = γ(a);

d(w) + 2|w| otherwise.

25

From this observation and the definition of λ, equation 3 follows by induction.
This completes the proof of the theorem. �

Proposition 6.4 When A and B are as in Theorem 6.3 and, additionally, B is
invertible, the automaton LA,B is a Moore machine (as in Definition 2.3). Recall
that the value of the output function λ(s, x) of a Moore machine only depends on the
state s.

Proof. By assumption, A is invertible, and so is Ad(w) for any w ∈ X∗. B is invertible
by assumption. By Proposition 2.10, their sections β = B|w and γ = Ad(w)|w are
invertible, and so is βγ−1.

Now the set of permutations Perm({0, 1}) = {1, σ}, so either βγ−1(x) = (x), or
βγ−1(x) = σ(x).

In the first case, λ(β, γ, δ)(x) = 0 for x ∈ {0, 1}.
Otherwise, since permutation σ has no fixed points, β(x) 6= γ(x) and λ(β, γ, δ)(x) =

1 for x ∈ {0, 1}. �

Example 6.5 Let A be the adding machine (see Figure 2a) with states A and 1
(trivial state). Let automaton F be given by Figure 2b and have states {a, b, c}, with
initial state a. We consider LogA F .

Note that
A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Therefore, A2|w| |w = A for all w ∈ X∗ (intuitively,
adding 2n to a dyadic number is the same as adding 1 to n+ 1’st digit).

We thus have SA,B ⊂ {a, b, c} × {A, 1} × {A}. Consequently, |SA,B| ≤ 6.
Let us compute the transition and the output function for LA,B. By Proposition

6.4, LA,B is a Moore machine, so we let * stand for either 0 or 1 in what follows:

λ((a, 1, A), ∗) = 1

λ((a,A,A), ∗) = 0

λ((b, 1, A), ∗) = 1

λ((b, A,A), ∗) = 0

λ((c, 1, A), ∗) = 0

λ((c, A,A), ∗) = 1
We can use this to compute the transition function:

π((a, 1, A), 0) = (c, 1, A)

π((a, 1, A), 1) = (b, A,A)

π((a,A,A), 0) = (c, 1, A)

π((a,A,A), 1) = (b, A,A)

π((b, 1, A), 0) = (b, 1, A)

π((b, 1, A), 1) = (c, A,A)

π((b, A,A), 0) = (b, 1, A)

π((b, A,A), 1) = (c, A,A)

π((c, 1, A), 0) = (a, 1, A)

π((c, 1, A), 1) = (a, 1, A)

π((c, A,A), 0) = (a,A,A)

π((c, A,A), 1) = (a,A,A)
Since δ = A for all (β, γ, δ) ∈ SA,B, we omit it and write (β, γ) for (β, γ, A) in

LA,B. The automaton LA,B we have computed here is in in Figure 9. 4

26

Figure 9: Automaton LA,B when A is the adding machine and B is automaton F .
The output from a state is the big number next to it.

Example 6.5 calls for a more efficient notation in the case when A is the adding
machine and B is invertible:

Corollary 6.6 Let A be the adding machine given by automaton of Figure 2a,
and assume B is invertible. Then δ = A for all (β, γ, δ) in the connected component
of (B,1, A) in LA,B, and so can be omitted. After relabeling (β, γ, δ) → (β, γ) in

LA,B , we obtain the Moore machine L̂A,B with initial state (B,1), and transition
and output functions π and λ as specified in Table 1.

Note: L̂ and L are equivalent automata: L(w) = L̂(w) for all words w.

β and γ are both active Exactly one of β and γ
or both passive is active

π((β, γ), a) (β|a, γ|a) (β|a, (γA)|a)
λ((β, γ)) 0 1

Table 1: Transition and output functions of the automaton computing LogA(B) when
A is the adding machine and B is invertible

Proof. Observe that
A2|a = A|A(a)A|a = A,

since A|0A|1 = A|1A|0 = A. Since the initial state is (B,1, A), it follows that the
rest of the states in the connected component of LA,B containing the initial state are
of the form (β, γ, A). Similarly, γ ∈ {1, A}.

The rest follows from the construction 6.3 and Prop. 6.4. Note that β(x) = γ(x)
for x ∈ X = {0, 1} if and only if β and γ are both active or both passive. �

27

When A, B are as in the Corollary above, it is easy to construct LA,B, since once
can see β, γ are active or passive by examining the diagram of the automatons B
and A.

Remark 6.7 When B is invertible, and β ∈ S(B) is a state of B, the transition
function λ of B at β, λβ, takes values in Perm(X) = {1, σ}. The Table 1 of Propo-
sition 6.6 can be rewritten out explicitly as Table 2.

λβ γ x π((β, γ), x) λ((β, γ), x)
1 1 0 (π(β, 0),1) 0
1 1 1 (π(β, 1),1) 0
σ A 0 (π(β, 0),1) 0
σ A 1 (π(β, 1), A) 0
1 A 0 (π(β, 0), A) 1
1 A 1 (π(β, 1), A) 1
σ 1 0 (π(β, 0),1) 1
σ 1 1 (π(β, 1), A) 1

Table 2: Table 1 with explicit values of π, γ

Example 6.8 We compute the distance automaton when A is the adding machine,
and B is the Bellaterra automaton (Figure 10). This automaton is so called because
it was was studied during the summer school in Automata Groups in the Autonomous
University of Barcelona in Bellaterra. An interesting property of it is that the group
generated by its states is a free product of 3 copies of Z/2Z [SavVor].

Figure 10: Bellaterra automaton

Using the new notation:

28

λ((a, 1)) = 0

λ((a,A)) = 1

λ((b, 1)) = 0

λ((b, A)) = 1

λ((c, 1)) = 1

λ((c, A)) = 0

π((a, 1), 0) = (c, 1)

π((a, 1), 1) = (b, 1)

π((a,A), 0) = (c, A)

π((a,A), 1) = (b, A)

π((b, 1), 0) = (b, 1)

π((b, 1), 1) = (c, 1)

π((b, A), 0) = (b, A)

π((b, A), 1) = (c, A)

π((c, 1), 0) = (a, 1)

π((c, 1), 1) = (a,A)

π((c, A), 0) = (a, 1)

π((c, A), 1) = (a,A)

In the above example, we have constructed the automaton L̃ in Figure 11a. The
automaton appearing in Figure 11b will be explained later. 4

(a) LA,B
(b) The delayed automaton σLA,B is invertible

Figure 11: Construction of LA,B where A is the adding machine and B is Bellaterra

7 Automatic Exp and Logarithm of Products

It is worthwhile to consider the operation opposite to constructing LogA(B).
Let |X| = 2, and let ψ : XN → Z2 be the function that naturally identifies words

in X with dyadic integers:

ψ(w) =
|w|−1∑
i=0

wi2
i.

29

Proposition 7.1 Let A, B be tree endomorphisms. Define a function ExpA(B)n on
words w of length n by

ExpA(B)n(w) = Aψ(B(w))(w).

Then for all n, ExpA(B)n is an endomorphism of finite trees.
The endomorphisms of finite trees ExpA(B)m, ExpA(B)k agree on the levels

1, 2, . . . ,min(m, k) on which they are both defined.

Proof. We need to show that if w ∈ X∗ and x, y ∈ X, then ExpA(B)(wx) and
ExpA(B)(wy) only differ in their last symbol. Let n = |w|. Observe that ψ(B(wx))
differs from ψ(B(w)) by a multiple of 2n. Now

ExpA(B)n+1(wx) = Aa·2
n

Aψ(B(w))(wx), (4)

where a ∈ {0, 1} is given by a = B|w(x). Note that A2n(v) = v for any word v
of length n because the length of any orbit of A on the level n is a factor of 2n.
Therefore the prefix of length n of ExpA(B)n+1(wx) is given by Aψ(B(w))(w), i.e., it
does not depend on x. Thus ExpA(B) is an endomorphism.

The above argument also shows that ExpA(B)n+1 and ExpA(B)n agree on levels
1, 2, . . . , n. This completes the proof. �

Definition 7.2 Let ExpA(B) denote the extension of the maps ExpA(B)n to the
boundary of the tree ∂T . We shall use the same notation for action on finite words.

Proposition 7.3 Let A be a tree endomorphism, and B be a Moore machine. Then
ExpA(B) is an automorphism of the tree T .

Proof. It suffices to show that ExpA(B)n is invertible for all n. Consider an arbitrary
word w ∈ X∗ of length n and a letter x ∈ X. Recall that B being a Moore machine
means that B|w is constant on X. Therefore the value of ExpA(B)n+1(wx) (see
equation (4)) is given by a power of A that does not depend on x. By assumption,
A is invertible, so its sections are invertible as well. Hence ExpA(B)n+1|w acts as a
permutation of X.

The proposition follows by induction on n. �

Remark: We have constructed the Log automaton LogAB for any invertible
Mealy machine B and any level-transitive automaton A of bounded activity. By
construction, the Log automaton of an invertible automaton is a Moore machine.

Therefore every invertible automaton B can be written in the form B = ExpAM ,
where A is the adding machine (or any bounded-activity, level-transitive automaton),
and M is a Moore machine. Note that, in general, one cannot construct a Moore
machine (synchronously) equivalent to a given Mealy machine. This construction
provides an alternative.

30

7.1 Logarithm of product

Proposition 7.4 Let A and B be finite state automata. Then

ExpA(LogA(B)) = B

as endomorphisms of the tree T . In particular, the Automatic Logarithm, as an
inverse of Exp, is unique. That is, if ExpAB1 = ExpAB2, then B1 = B2 as endo-
morphisms of trees.

Proof. ExpA(LogA(B)) = B by construction. If ExpAB1 = ExpAB2, then for any
word w we have ψ(B1(w)) = ψ(B2(w)) mod 2|w|. This implies B1(w) = B2(w). �

We can now argue about Log using Exp. To proceed, we define:

Definition 7.5 Let A = (SA, πA, λA, SA0) and B = (SB, πB, λB, SB0) be finite au-
tomata. The sum automaton A ⊕ B is the automaton with the set of states
S = SA × SB × {0, 1}, and transition map π and output map λ given by

π((s, t, c), x) = (πA(s, x), πB(t, x), d), where

d =

1 if λ(s, x) + λ(t, x) + c ≥ 2,

0 otherwise;

λ((s, t, c), x) = λ(s, x) + λ(t, x) + c mod 2.

For a finite word w, the sum automaton A⊕B outputs ψ(A(w)) +ψ(B(w)) as a
dyadic integer. The third component of a state can be understood as the carry bit.

This definition allows us to compute the Log automaton of a product.

Proposition 7.6 Let B,C be invertible finite automata and A be bounded-activity,
level-transitive automaton. Then

LogA(BC) = ((LogAB)C)⊕ LogAC.

Proof. Let LogAB = a and LogAC = c. Then

C(w) = Aψc(w)(w)

BC(w) = AψbC(w)(C(w))

= AψbC(w)(Aψc(w)(w))

= AψbC(w)+ψc(w)(w)

= Aψ((bC)⊕c)(w)(w)

= ExpA((bC)⊕ c)(w).

31

Therefore, by Proposition 7.4,

LogA(BC) = (bC)⊕ c,

which completes the proof. �

8 Distribution of lengths of chords

We now approach the main goal of our investigation. The measure we are interested
in is µ = µA,B := LogA(B)∗ν, where ν is the uniform Bernoulli measure on T .

This measure gives the distribution of the displacement function: d – a finite
integer written in binary as w = w0 . . . wn−1 (and thus interpreted as an element of
Z/2nZ),

µ(wXN) = |{v ∈ Xn : LogA,n(B)(v) = w}|.
We introduce this measure with the goal of studying the properties of the graphs

of action, such as their diameter. For example, Pak and Malyshev prove in [PakMal]
that the diamter of the graph of action of the states of automaton F on level n grows
at a rate of O(n2). However computer experiments give hope that this bound can be
improved to O(n). Finding the connections between the measure µ and the properties
of the graphs nevertheless remains an open problem.

Figure 3 illustrates the graphs of action with the cycle generated by the adding
machine A put on a circle, and the edges corresponding to the action of another
automaton being chords in that circle, motivating the title of this section. The
graph on the right has a smaller diameter.

We now proceed to examine interesting properties of µ, and answer questions
about it: what kind of measure is µ? Is it Markov, for example?

In fact, there is an easy sufficient condition for µ to be not only Markov, but
uniform Bernoulli on a cylinder. To state it, we need to make several definitions:

Definition 8.1 σ : XN → XN is the (left) shift, defined by σ(aw) = w for a ∈ X
and w ∈ XN. We define the left shift σ : X∗ → X∗ for finite words w in the same
way.

Definition 8.2 When L is a Moore machine, the delayed automaton σL is the
automaton that computes the composition σ ◦ L. It has the same states, initial state
and the transition function as L, but the output function σλ is given by

σλ(s, x) = λ(π(s, x)),

which is well-defined when L is a Moore machine.

32

When L is Moore, for any finite word w ∈ X∗ and x ∈ X,

L(wx) = L(0)σL(w) = L(1)σL(w).

Proposition 8.3 Let X be a finite alphabet. Let L be a Moore machine with initial
state s0, and let a = λ(s0). Let ν be the uniform Bernoulli measure on XN.

Then µ = L∗ν is supported on the cylinder aXN, and µ|a = (σL)∗ν. If σL is
invertible, µ|a is uniform Bernoulli (i.e. µ|a = ν).

Proof. First, note that

µ(aXN) = L∗ν(aXN) = ν(L−1(aXN)) = ν(λ−1s0 (a)XN) = ν(XN) = 1.

Now µa = (L∗ν)|a = (σL)∗ν, since for all v ∈ X∗,

(σL)∗ν(vXN) = ν
(
(σL)−1(vXN)

)
= ν

(
L−1(σ−1

(
(vXN)

))
= ν

(
L−1

(⊔
x∈X

xvXN
))

= ν
(
L−1(avXN)

)
= L∗v

(
avXN

)
= (L∗v)|a(vXN) (since, as noted, L∗ν(aXN) = 1).

Thus (σL)∗ν = (L∗ν)|a.
If σL is invertible, then (σL)∗ν = ν by Proposition 4.3. This completes the proof.

�

Corollary 8.4 Let X, A, B and L = LA,B be as in Prop 6.3 (so B is invertible,
and L = LA,B is Moore). Let ν be the uniform Bernoulli measure on X∗.

Then µ = LogA(B)∗ν is supported on L(0)XN, and µ|L(0 = ν.

Example 8.5 Let L = LA,B with A being the adding machine, and B being the
Bellaterra automaton defined in Fig. 10. Then L(0) = L(1) = 0. The delayed
automaton σL is shown in Figure 11b, and it is invertible (but not minimal: can be
reduced to an automaton with 5 states).

Therefore, µ = LogA(B)∗ν is the uniform Bernoulli measure supported on 0XN,
i.e. µ|0 = ν and µ|1 = 0. 4

33

Proposition 8.3 demonstrates that when B is invertible, the delayed automaton
σLA,B can be useful for examining µA,B. We make use of it again for what follows:

Theorem 8.6 Let ν be the uniform Bernoulli measure. In the case A is the adding
machine and B is automaton F (see Figure 2b), the measure µA,B = LogA(B)∗ν is
finite-state. Furthermore, µA,B|0 = 0, and automaton in Figure 13 computes µA,B|1
(in the sense of Definition 3.5).

Proof. Write µ = µA,B. By Proposition 8.3 and the already computed L = LA,B in
Fig 9, µ|0 = 0, and the measure is supported on the cylinder 1XN, with µ|1 = (σL)∗ν.
We thus point our attention to σL, shown in Figure 12a.

First, observe that the automaton σL is not minimal. After identifying states
(a, 1) and (a,A) into state a, and identifying states (b, 1) and (b, A) into state b, we
obtain a minimal automaton L (Figure 12b).

(a) σLA,B
(b) σLA,B minimized.

Figure 12: Automatons σLA,B and its minimization

Recall that the states a, b, (c, 1) and (c, A) of the automaton σLA,B are sections of
LA,B, and can be seen as endomorphisms whose automata coincide with LA,B except
for the initial state (see Remark 2.7), i.e., LA,B = a, LA,B|1 = b, etc.

If g is an action on the tree T , we write µg for g∗ν. Thus we are interested in
µa = µ = a∗ν = (σL)∗ν, and we compute it by writing down its sections in terms of
µa, µb, µc,1 and µc,A.

We apply Corollary 4.2 to LA,B to obtain the sections of µ by x ∈ X = {0, 1}.
On the right, we evaluate these measures on the cylindrical sets of the form xXN, so
that we could continue the computation by applying Proposition 2.24.

34

µa|0 =
µb + µc,1

2
µa|1 = 0

µb|0 = 0

µb|1 =
µb + µc,A

2
µc,1|0 = 0

µc,1|1 = µa

µc,A|0 = µa

µc,A|1 = 0

µa(0X
N) = 1

µa(1X
N) = 0

µb(0X
N) = 0

µb(1X
N) = 1

µc,1(0X
N) = 0

µc,1(1X
N) = 1

µc,A(0XN) = 1

µc,A(1XN) = 0

Having expressed the sections by one character in terms of each other, we have
obtained a set of recursive relations which allows us to compute sections by arbitrary
words. To find the set of all sections, we proceed by repeatedly computing sections
using Proposition 2.24. We find:

µb + µc,1
2

|0 = 0

µb + µc,1
2

|1 =
µb + µc,A + 2µa

4
µb + µc,A

2
|0 = µa

µb + µc,A
2

|1 =
µb + µc,A

2

µb + µc,1
2

(0XN) = 0

µb + µc,1
2

(1XN) = 1

µb + µc,A
2

(0XN) =
1

2
µb + µc,A

2
(1XN) =

1

2
And again:

µb + µc,A + 2µa
4

|0 =
µa + µb + µc,1

3
µb + µc,A + 2µa

4
|1 =

µb + µc,A
2

µb + µc,A + 2µa
4

(0XN) =
3

4
µb + µc,A + 2µa

4
(1XN) =

1

4
Finally:

µa + µb + µc,1
3

|0 =
µb + µc,1

2
µa + µb + µc,1

3
|1 =

µb + µc,A + 2µa
4

µa + µb + µc,1
3

(0XN) =
2

3
µa + µb + µc,1

3
(1XN) =

1

3
Since we have obtained no new sections at this step, the sections so far are all the

sections of µ. We have all the data now to build the automaton in Figure 13 that
computes µ|1. �

The preceding example shows that µA,B is finite-state (in the sense of Definition

35

Figure 13: Automaton that computes µA,B|1 for A the adding machine and B –
automaton F , defined in Figure 2b

3.5) in the case when A is the adding machine and B is automaton F . It should be
noted that for some choices of automaton B the measure µA,B is not finite-state.

Example 8.7 Let A be the adding machine and B be the Lamplighter automaton;
see Figure 14. Then the measure µA,B is not finite-state as shown below. 4

Figure 14: The lamplighter automaton

We compute the automaton LA,B using Theorem 6.3:

36

λ((a, 1)) = 1

λ((a,A)) = 0

λ((b, 1)) = 0

λ((b, A)) = 1

π((a, 1), 0) = (a, 1)

π((a, 1), 1) = (b, A)

π((a,A), 0) = (a, 1)

π((a,A), 1) = (b, A)

π((b, 1), 0) = (a, 1)

π((b, 1), 1) = (b, 1)

π((b, A), 0) = (a,A)

π((b, A), 1) = (b, A)

The diagrams of the automata LA,B and σLA,B are shown in Figures 15a and 15b,
respectively. Since (b, 1) is not reachable from the initial state (a, 1), it is omitted
in Figure 15b. The automaton in that figure is not minimal; states (a, 1) and (a,A)
can be identified. The minimized automaton is shown in Figure 15c; the relabeling is
a = (a, 1) = (a,A), b = (b, A), and (b, 1) is discarded as unreachable from the initial
state a.

(a) LA,B
.

(b) σL; states unreachable from the
initial state (a, 1) not shown

.

(c) σL minimized

.

Figure 15: L = LA,B and σL for A the adding machine, B the Lamplighter.

37

Noting that µA,B is supported on 1XN (by Proposition 8.3), we now point our
attention to the measure µ̃ = µA,B|1. Using Corollary 4.2 for the minimized σL in
Figure 15c and the notation of Example 8.6, we get:

µa|0 = 0

µa|1 =
1

2
(µa + µb)

µb|0 = µa

µb|1 = µb

µa(0X
N) = 0

µa(1X
N) = 1

µb(0X
N) =

1

2

µb(1X
N) =

1

2
Now let µ0 := µa and µn := µn−1|1. Again we use Corollary 2.24:

µ1 =
(µa + µb)

2

µ2 = µ1|1 =
1

2

(
µa|1 +

µb|1
2

)
/µ1

(
1XN

)
=

(µa + 2µb)

4
· 4

3

=
(µa + 2µb)

3

µ3 = µ2|1 =
(µa + 3µb)

4
. . .

µn = µn−1|1 = . . .

All this leads to the following:

Proposition 8.8 Let µ0 = µa, and µn = µn−1|1, for n ∈ N. Then

µn =
µa + nµb
n+ 1

µn(0XN) =
n

2(n+ 1)

µn(1XN) =
n+ 2

2(n+ 1)

Proof. By induction on n. The proposition holds for n = 0. Assuming it holds for

38

Figure 16: The infinite automaton computing µ̃A,B where A is the adding machine,
and B is the Lamplighter automaton.

n = k, by Corollary 2.24:

µk+1 = µk|1 =
1

k + 1

(
µa + µb

2
+

1

2
kµb

)
/

(
k + 2

2(k + 1)

)

=
µa + (k + 1)µb

k + 2
. �

Note that measures µn are all distinct.

Corollary 8.9 µA,B is not finite-state when A is the adding machine and B is Lamp-
lighter.

Corollary 8.10 µn for n = 0, 1, 2, . . . are all the nontrivial sections of µ̃.

Proof. This immediately follows from observing that µn|0 = µ0 for n > 0:

µn|0 =
µa + nµb
n+ 1

|0 =
1

n+ 1

nµa
2

2(n+ 1)

n
= µa = µ0.

The (infinite) automaton that computes µ̃ is shown in Figure 16. �

Observe that the computations in these examples are almost linear. The following
proposition makes this notion precise.

39

Proposition 8.11 Let X = {x0, . . . , xk−1} be a finite alphabet, L be a Mealy ma-
chine with states S = {g0, . . . , gn−1}, and ν be a Bernoulli measure given by a vector
p = (p(x0), . . . , p(xk−1)). For any vector v = (a0, a1, . . . , an−1) ∈ R let

µv =
n−1∑
i=0

aigi∗ν.

Then for any x ∈ X there exists an n × n matrix Mx and an n-dimensional vector
px such that

µv|x = µw

with

w =
Mxv

px.v
.

The entries of Mx and coordinates of px are given by

Mx(i, j) =
∑

y:π(gi,y)=gj and λ(gi,y)=x

p(y);

px(j) =
n−1∑
i=0

Mx(i, j).

Proof. From Proposition 4.2 and Corollary 2.24:

(
n∑
i=0

aigi∗ν

)∣∣∣∣∣
x

=

n∑
i=0

aigi∗ν(xXN)(gi∗ν)|x
n∑
i=0

aigi∗ν(xXN)

=

n∑
i=0

ai
∑

y∈λ−1
gi

(x)

p(y)π(gi, y)∗ν

n∑
i=0

ai
∑

y∈λ−1
gi

(x)

p(y)

.

The proposition follows. �

Corollary 8.12 Let

φx(v) :=
Mxv

px · v
.

Then µv is finite-state if and only if the orbit of v under the action of the semigroup
generated by φx, x ∈ X is finite. The graph of the action is the transition diagram
of the automaton that computes µ[v].

40

The above corollary can be made simpler once we consider v as an element of
RPn. For v = (a0, a1, . . . , an−1), write [v] = [a0 : a1 : . . . : an−1] ∈ RPn and let

µ[v] :=
µv

µv (XN)
.

This is well defined and
[φx(v)] = [Mxv].

Corollary 8.13 µ[v] is finite-state if and only if the orbit of [v] under the action of
the semigroup generated by 〈Mx : x ∈ X〉 is finite.

In the special case when ν is the uniform Bernoulli measure, it is convenient to
use matrices M̃x with entries

M̃x(i, j) =
∑

y:π(gi,y)=gj and λ(gi,y)=x

1.

Similarly, set p̃x = |X|px. By definition, M̃x = |X|Mx, [M̃xv] = [Mxv], and φx(v) =
M̃xv/p̃x · v. However M̃x has integer entries: Mx(i, j) ∈ {0, 1, . . . , |X|}.

Corollary 8.14 In the case ν is uniform Bernoulli, the measure µ[v] is finite-state if
and only if the orbit of [v] under the action of the multiplicative semigroup generated
by integer matrices M̃x, x ∈ X is finite.

Example 8.15 When L = LA,B, where A is the adding machine and B is automaton
F given by Figure 2b, we have

M̃0 =

0 0 0 2
1 0 0 0
1 0 0 0
0 0 0 0

p̃0 = (2, 0, 0, 2)

φ0(v) = M̃0v/p̃0 · v

M̃1 =

0 0 2 0
0 1 0 0
0 0 0 0
0 1 0 0

p1 = (0, 2, 2, 0)

φ1(v) = M1v/p1 · v

41

The orbit of (1, 0, 0, 0) under the action of 〈φ0, φ1〉 is

((0, 0, 0, 0), (0, 1/2, 0, 1/2), (0, 1/2, 1/2, 0), (1/3, 1/3, 1/3, 0), (1/2, 1/4, 0, 1/4), (1, 0, 0, 0)).

These correspond to the states in Figure 13.
Equivalently, the orbit of [1 : 0 : 0 : 0] under the action of 〈M̃0, M̃1〉 is

([0 : 0 : 0 : 0], [0 : 1 : 0 : 1], [0 : 1 : 1 : 0], [1 : 1 : 1 : 0], [2 : 1 : 0 : 1], [1 : 0 : 0 : 0]).

4

Example 8.16 When L = LA,B with A the adding machine and B the Lamplighter,
we have

M̃0 =

(
0 1
0 0

)
M̃1 =

(
1 0
1 1

)

The orbit of [1 : 0] under the action of M̃1 is {[1 : n] : n ∈ N}, and is not finite.
4

9 When the measure is Markov

Having obtained the automaton that computes a measure, we can ask the question
of what kind of measure it is. Recall from Definition 3.3 that a k-step Markov
measure is a measure whose sections are uniquely determined by suffixes of length
k, regardless of what comes before. The following theorem provides necessary and
sufficient conditions for a finite-state measure to be k-step Markov.

Theorem 9.1 Let µ be a finite-state measure with n nontrivial sections µ1, . . . , µn.
Then µ is k-step Markov (for some k ∈ N) if and only if for any nonempty word
w ∈ X∗, there is at most one i, 1 ≤ i ≤ n such that µi|w = µi. When µ is k-step
Markov, we can choose k ≤ n(n− 1).

Proof. ⇒ Proof by contradiction. Let µ be k-step Markov. Assume that the hy-
pothesis of the theorem does not hold, that is, µ has two distinct nontrivial sections
µ|u and µ|v (where u, v ∈ X∗) such that (µ|u)|w = µ|u and (µ|v)|w = µ|v for some
nonempty word w ∈ X∗. Let W = www . . . w be the word w repeated several times
so that |W | > k. Then

µ|uW = (µ|u)|W = (µ|u)|ww...w = µ|u,
µ|vW = (µ|v)|W = (µ|v)|ww...w = µ|v.

42

So the nontrivial sections µ|uW and µ|vW are different, but |W | > k. That is, a suffix
of length k does not uniquely determine a nontrivial section of µ. This contradicts
the assumption that µ is k-Markov.
⇐: Assume now that the hypothesis holds. For µ to be k-step Markov, it suffices

to show that for any two nontrivial sections µ|u and µ|v, and any word w with |w| = k,
we have µ|uw = µ|vw whenever both uw and vw are admissible words.

Let k = n(n−1) and fix w = w1w2 . . . wk, wi ∈ X with |w| = k. Consider Table 3.
The columns of this table are the paths from µ|u and µ|v obtained by taking sections
by the word w character by character. By assumption, uw and vw are admissible,

µ|u µ|v
µ|uw1 µ|vw1

µ|uw1w2 µ|vw1w2

.
µ|uw µ|vw

Table 3: Paths of length k starting from µ|u and µ|v

so Table 3 contains only nontrivial sections. We claim that one row of the table
contains two identical measures: µ|uw1..wi

= µ|vw1..wi
for some i, 0 ≤ i ≤ k. Then

each subsequent row also contains two identical measures. In particular, µ|uw = µ|vw.
To prove the claim (and complete the proof), assume the contrary. Since µ has only
n nontrivial sections, there are only n(n − 1) pairs of distinct nontrivial sections.
Table 3 has k + 1 > n(n− 1) rows, hence a row in the table must repeat, i.e.,

(µ|uw1..wi
, µ|vw1..wi

) = (µ|uw1..wj
, µ|vw1..wj

)

for some 1 ≤ i < j ≤ k. But that means that the word W := wi+1 . . . wj fixes two
sections µU := µ|uw0..wi

and µV := µ|vw0..wi
; that is, (µ|U)|W = µ|U and (µ|V)W = µ|V .

By our hypothesis, the nontrivial section fixed by W is unique, so µ|U = µV . Since
UW = uw and VW = vw, this implies µ|uw = µ|vw. This completes the proof. �

Remark: The free semigroup FS(X) generated by X acts on the sections of µ:
for w ∈ FS(X), w · µi := µi|w. The condition of Theorem 9.1 can be re-stated as
follows: the action of any nonempty word w ∈ X∗ on the sections of µ has at most
one nontrivial fixed point.

Theorem 9.1 is illustrated by the following example.

Example 9.2 When A is the adding machine and B is automaton F , the measure
µA,B is defined by the automaton M in Figure 13. The measure satisfies the hypoth-
esis of Theorem 9.1. By the theorem, µA,B is k-step Markov for some k ≤ 20. Direct

43

examination of the automaton M reveals that the admissible words for µA,B are all
words not containing 000 or 1101, and the measure is, in fact, 3-step Markov (see
Table 4). 4

w ends in µ|w
00

µ|b + µ|c,1
2

11
µ|b + µ|c,A

2

01
µ|b + µ|c,A + 2µa

4
110 µa

010
µa + µ|b + µ|c,1

3
Minimal forbidden words:

000, 1101.

Table 4: µA,B as a Markov measure when B is automaton F

The condition of Theorem 9.1 is not satisfied trivially.

Example 9.3 A finite-state measure µ defined by the automaton in Figure 17 is not
a Markov measure. The initial state µ (on the top left) is fixed by the action of the
word 01, but so is the top right state, µ|001: µ|01 = µ and (µ|001)|01 = µ|001. Note
that µ 6= µ|001 since µ(0XN) = 3

7
while µ|001(0XN) = 2

5
. By Theorem 9.1, µ cannot

be a k-step Markov measure for any k. 4

44

Figure 17: A diagram of the automaton of a finite-state measure that is not Markov.

45

