On the topological full group containing the Grigorchuk group

Yaroslav Vorobets

Abstract

We consider the topological full group of a substitution subshift induced by a substitution $a \to aca, b \to d, c \to b, d \to c$. This group is interesting since the Grigorchuk group naturally embeds into it. We show that the topological full group is finitely generated and give a simple generating set for it.

1 Introduction

Let X be a Cantor set and $T: X \to X$ be a minimal homeomorphism. The topological full group of T, denoted [[T]], is a transformation group consisting of all homeomorphisms $f: X \to X$ that can be given by $f(x) = T^{\nu(x)}(x), x \in X$ for some continuous function $\nu: X \to \mathbb{Z}$. Continuity of ν implies that this function is locally constant and takes only finitely many values. Then nonempty level sets of ν form a partition of the Cantor set X into clopen (i.e., both closed and open) sets. Thus every element of [[T]] is "piecewise" a power of T. The topological full group [[T]] is countable (as there are only countably many clopen subsets of X).

The notion of the topological full group was introduced by Giordano, Putnam and Skau [GPS] who showed that [[T]] is an (almost) complete invariant of T as a topological dynamical system.

Theorem 1.1 ([GPS]) Given minimal homeomorphisms $T_1 : X \to X$ and $T_2 : X \to X$ of a Cantor set X, the topological full groups $[[T_1]]$ and $[[T_2]]$ are isomorphic if and only if T_1 is topologically conjugate to T_2 or T_2^{-1} .

In this paper we are concerned with group-theoretical properties of a topological full group [[T]].

Theorem 1.2 ([GPS]) There exists a unique homomorphism $I : [[T]] \to \mathbb{Z}$ such that I(T) = 1.

The homomorphism I is called the *index map*. Clearly, every element of finite order is contained in the kernel of I.

Theorem 1.3 ([Mat]) The kernel of the index map is generated by elements of finite order.

Theorem 1.3 was proved by Matui [Mat] who initiated the systematic study of grouptheoretic properties of topological full groups (he also introduced the notation [[T]]).

We can construct many elements of finite order in [[T]] as follows. Let $U \subset X$ be a clopen set. Suppose that for some integers M and N, M < N, the sets $T^M(U), T^{M+1}(U), \ldots, T^N(U)$ are pairwise disjoint. Then one can define a transformation $\Psi_{U,M,N} : X \to X$ by

$$\Psi_{U,M,N}(x) = \begin{cases} T(x) & \text{if } x \in T^M(U) \cup T^{M+1}(U) \cup \ldots \cup T^{N-1}(U), \\ T^{M-N}(x) & \text{if } x \in T^N(U), \\ x & \text{otherwise.} \end{cases}$$

By construction, $\Psi_{U,M,N}$ is an element of the topological full group [[T]] of order N - M + 1. We are also going to use alternative notation δ_U for the map $\Psi_{U,0,1}$ and τ_U for the map $\Psi_{U,0,2}$. Each δ_U is an element of order 2 while each τ_U is an element of order 3 (hence the notation: δ as in $\delta \acute{vo}$, τ as in $\tau \rho \acute{i} \alpha$).

It is not hard to show that every element of finite order in [[T]] can be decomposed as a product of elements of the form δ_U . Together with Theorems 1.2 and 1.3, this yields the following.

Theorem 1.4 ([Mat]) The topological full group [[T]] is generated by T and all transformations of the form δ_U .

There is much more to say about the commutator group of [[T]].

Theorem 1.5 ([Mat]) The commutator group of [[T]] is generated by all elements of the form τ_U .

Theorem 1.6 ([Mat]) The commutator group of [[T]] is simple.

Theorem 1.7 ([Mat]) The commutator group of [[T]] is finitely generated if and only if T is topologically conjugate to a (minimal) subshift.

Now we introduce a specific transformation T, a substitution subshift. Let σ denote the Lysenok substitution over the alphabet $\mathcal{A} = \{a, b, c, d\}$, namely, $\sigma(a) = aca$, $\sigma(b) = d$, $\sigma(c) = b$, and $\sigma(d) = c$. This substitution was originally used by Lysenok [Lys] to obtain a nice recursive presentation of the Grigorchuk group:

$$\mathcal{G} = \langle a, b, c, d \mid 1 = a^2 = b^2 = c^2 = d^2 = bcd = \sigma^k((ad)^4) = \sigma^k((adacac)^4), \ k \ge 0 \rangle.$$

The substitution σ acts naturally on the set \mathcal{A}^* of finite words over the alphabet \mathcal{A} as well as on the set $\mathcal{A}^{\mathbb{N}}$ of infinite words over \mathcal{A} . There exists a unique infinite word $\xi \in \mathcal{A}^{\mathbb{N}}$ fixed by σ : $\xi = acabacad \dots$ Let $T : \Omega \to \Omega$ be the two-sided subshift generated by ξ . The phase space Ω of the subshift T consists of bi-infinite sequences $\omega = \dots \omega_{-2}\omega_{-1}\omega_0.\omega_1\omega_2\dots$ such that every finite subword $\omega_l \omega_{l+1} \dots \omega_{m-1} \omega_m$ occurs somewhere in ξ . The transformation is defined by $T(\omega) = \dots \omega_{-1}\omega_0\omega_1.\omega_2\omega_3\dots$

Theorem 1.8 ([Vor]) The subshift T is a minimal homeomorphism of the Cantor set Ω .

Given two finite words u and w over the alphabet \mathcal{A} , we denote by [u.w] the set of all bi-infinite sequences $\omega = \ldots \omega_{-2}\omega_{-1}\omega_{0}.\omega_{1}\omega_{2}\ldots$ in Ω such that $\omega_{-M+1}\ldots\omega_{-1}\omega_{0} = u$ and $\omega_{1}\omega_{2}\ldots\omega_{N} = w$, where M is the length of u and N is the length of w $(M, N \ge 0)$. We refer to [u.w] as a cylinder of dimension M + N. The cylinder is a clopen set. Any clopen subset of Ω splits into a disjoint union of cylinders of dimension N provided that N is large enough.

The cylinder [u.w] is a nonempty set if and only if the concatenated word uw occurs in ξ infinitely many times. Infinitely many occurrences are required since ξ is an infinite sequence while elements of Ω are bi-infinite sequences. Actually, ξ is a Toeplitz sequence (see [Vor] or Lemma 2.2 below), which implies that every word occurring in ξ does this infinitely often. If at least one of the words u and w is not empty, then the cylinder [u.w] is disjoint from its image T([u.w]) (because there are no double letters in ξ) so that the transformation $\delta_{[u.w]}$ is well defined.

A direct relation between the Grigorchuk group \mathcal{G} and the topological full group of the substitution subshift T was established by Matte Bon [M-B] who showed that [[T]] contains a copy of \mathcal{G} .

Theorem 1.9 ([M-B]) The subgroup of [[T]] generated by $\delta_{[.a]}$, $\delta_{[.b]}\delta_{[.c]}$, $\delta_{[.c]}\delta_{[.d]}$, and $\delta_{[.d]}\delta_{[.b]}$ is isomorphic to the Grigorchuk group.

Theorem 1.7 implies that the commutator group of [[T]] is finitely generated. The main result of this paper is that the entire group [[T]] is finitely generated. Moreover, we provide an explicit generating set.

Theorem 1.10 The topological full group of the substitution subshift T is generated by transformations T, $\delta_{[.b]}$, $\delta_{[.d]}$, and $\delta_{[.acacaca]}$.

Note that $\delta_{[.a]}$ and $\delta_{[.c]}$ are not on the list of generators. It turns out that

$$\begin{split} \delta_{[.a]} &= T^{-1} \delta_{[.b]} \delta_{[.d]} T^{-2} \delta_{[.b]} \delta_{[.d]} T^{3} \delta_{[.acacac]} T^{2} \delta_{[.acacac]} T^{-2}, \\ \delta_{[.c]} &= T^{-2} \delta_{[.b]} \delta_{[.d]} T^{3} \delta_{[.acacac]} T^{2} \delta_{[.acacac]} T^{-3} \end{split}$$

(see Section 4 for details).

The paper is organized as follows. In Section 2 we obtain very detailed information on clopen subsets of the Cantor set Ω . In Section 3 we derive some general properties of topological full groups (slightly generalizing [Mat]). In Section 4 the results of Sections 2 and 3 are applied to prove Theorem 1.10. The proof is loosely modeled upon the proof of Theorem 1.7 in [Mat].

2 Combinatorics of the substitution subshift

First we are going to establish some properties of the infinite word $\xi = \xi_1 \xi_2 \xi_3 \dots$ fixed by the Lysenok substitution σ .

For any integer $n \ge 1$ let $w_n = \sigma^{n-1}(a)$. For example, $w_1 = a$, $w_2 = aca$, $w_3 = acabaca$, $w_4 = acabacadacabaca$, $w_5 = acabacadacabacacacabacadacabaca$. Since the word $w_1 = a$ is

a proper beginning of the word $w_2 = aca$, it follows by induction that each w_n is a proper beginning of w_{n+1} . Consequently, there exists a unique infinite word $\xi \in \mathcal{A}^{\mathbb{N}}$ such that each w_n is a beginning of ξ . It is easy to see that ξ is the only infinite word fixed by σ .

For any integer $n \ge 1$ let $l_n = \sigma^{n-1}(c)$. Then $l_n = c$ if n leaves remainder 1 under division by 3, $l_n = b$ if n leaves remainder 2 under division by 3, and $l_n = d$ if n is divisible by 3.

Lemma 2.1 The word w_n has length $2^n - 1$ and $w_{n+1} = w_n l_n w_n$ for all $n \ge 1$.

Proof. For any $n \ge 1$ we obtain that $w_{n+1} = \sigma^n(a) = \sigma^{n-1}(\sigma(a)) = \sigma^{n-1}(aca) = \sigma^{n-1}(a)\sigma^{n-1}(c)\sigma^{n-1}(a) = w_n l_n w_n$. Since the word $w_1 = a$ has length $1 = 2^1 - 1$, l_n is always a single letter, and $(2^n - 1) + 1 + (2^n - 1) = 2^{n+1} - 1$, it follows by induction that the length of w_n is $2^n - 1$ for all $n \ge 1$.

Lemma 2.2 Given an integer $N \ge 1$, let $N = 2^n K$, where $n \ge 0$ and K is odd. Then $\xi_N = a$ if n = 0 and $\xi_N = l_n$ if $n \ge 1$.

Proof. Let S be the set of all words of the form $ar_1ar_2...ar_M$, where each $r_i \in \{b, c, d\}$. Since $\sigma(ab) = acad$, $\sigma(ac) = acab$, and $\sigma(ad) = acac$, it follows that the set S is invariant under the action of the substitution σ . Clearly, $ac \in S$. Then $w_m l_m = \sigma^{m-1}(a)\sigma^{m-1}(c) = \sigma^{m-1}(ac)$ is in S for all $m \ge 1$. Since any beginning of the infinite word ξ is also a beginning of some w_m , we obtain that $\xi = as_1 as_2 \ldots$, where each $s_i \in \{b, c, d\}$. In particular, $\xi_N = a$ if and only if N is odd.

Since the infinite word ξ is fixed by the substitution σ , it follows that for any given $n \geq 1$,

$$\xi = \sigma^{n+1}(\xi) = \sigma^{n+1}(a)\sigma^{n+1}(s_1)\sigma^{n+1}(a)\sigma^{n+1}(s_2)\dots = w_{n+1}s'_1w_{n+1}s'_2\dots$$

where $s'_i = \sigma^{n+1}(s_i)$, i = 1, 2, ... Note that each s'_i is a single letter from $\{b, c, d\}$. By Lemma 2.1, $w_{n+1} = w_n l_n w_n$ and the length of w_n is $2^n - 1$. Since $\xi = w_n l_n w_n s'_1 w_n l_n w_n s'_2 ...$, we obtain that $\xi_N = l_n$ for $N = 2^n, 3 \cdot 2^n, 5 \cdot 2^n, ...$ That is, $\xi_N = l_n$ if $N = 2^n K$, where K is odd.

Lemma 2.3 $\sigma(\xi_{2N+1}\xi_{2N+2}...\xi_{2N+2M}) = \xi_{4N+1}\xi_{4N+2}...\xi_{4N+4M}$ for all $N \ge 0$ and $M \ge 1$. Moreover, if $\sigma(w) = \xi_{4N+1}\xi_{4N+2}...\xi_{4N+4M}$ for some w, then $w = \xi_{2N+1}\xi_{2N+2}...\xi_{2N+2M}$.

Proof. For any $M \geq 1$ the word $\xi_1\xi_2...\xi_{2M}$ is a beginning of the infinite word ξ . Since ξ is invariant under the substitution σ , the word $\sigma(\xi_1\xi_2...\xi_{2M})$ is another beginning of ξ . According to Lemma 2.2, $\xi_i = a$ if and only if i is odd. Hence the word $\xi_1\xi_2...\xi_{2M}$ contains M letters a and M other letters. Since $\sigma(a) = aca$ is a word of length 3 while $\sigma(b)$, $\sigma(c)$, and $\sigma(d)$ are single letters, the length of $\sigma(\xi_1\xi_2...\xi_{2M})$ is 3M + M = 4M. We conclude that $\sigma(\xi_1\xi_2...\xi_{2M}) = \xi_1\xi_2...\xi_{4M}$. This proves the first statement of the lemma in the case N = 0. In the case $N \geq 1$, it follows from the above that $\sigma(\xi_1\xi_2...\xi_{2N}) = \xi_1\xi_2...\xi_{4N}$ and $\sigma(\xi_1\xi_2...\xi_{2N+2M}) = \xi_1\xi_2...\xi_{4N+4M}$. Since

$$\sigma(\xi_1\xi_2\ldots\xi_{2N+2M}) = \sigma(\xi_1\xi_2\ldots\xi_{2N})\,\sigma(\xi_{2N+1}\xi_{2N+2}\ldots\xi_{2N+2M}),$$

we obtain that $\sigma(\xi_{2N+1}\xi_{2N+2}\dots\xi_{2N+2M}) = \xi_{4N+1}\xi_{4N+2}\dots\xi_{4N+4M}$.

To prove the second statement of the lemma, it is enough to show that the action of the substitution σ on finite words is one-to-one, i.e., $\sigma(u_1) \neq \sigma(u_2)$ if $u_1 \neq u_2$. The reason is that neither of the words $\sigma(a), \sigma(b), \sigma(c), \sigma(d)$ is a beginning of another (in particular, neither is empty). Let u be the longest common beginning of the words u_1 and u_2 . If $u = u_1$ then $u_2 = u_1 s u'_2$ for some letter s and word u'_2 . Since $\sigma(s)$ is not empty, we obtain $\sigma(u_2) = \sigma(u_1)\sigma(s)\sigma(u'_2) \neq \sigma(u_1)$. The case $u = u_2$ is treated similarly. Otherwise $u_1 = us_1u'_1$ and $u_2 = us_2u'_2$, where s_1, s_2 are distinct letters and u'_1, u'_2 are some words. It is no loss to assume that the word $\sigma(s_1)$ is not longer than $\sigma(s_2)$. Since $\sigma(s_1)$ is not a beginning of $\sigma(s_2)$, it follows that $\sigma(u)\sigma(s_1)$ is not a beginning of $\sigma(u)\sigma(s_2)\sigma(u'_2) = \sigma(u_2)$. Then $\sigma(u_1) = \sigma(u)\sigma(s_1)\sigma(u'_1)$ cannot be the same as $\sigma(u_2)$.

We say that a word w' is obtained from a word w by a *cyclic permutation* of letters if there exist words u_1 and u_2 such that $w = u_1u_2$ and $w' = u_2u_1$.

Lemma 2.4 Any word of length 2^n that occurs as a subword in ξ can be obtained from one of the words $w_n b$, $w_n c$, and $w_n d$ by a cyclic permutation of letters.

Proof. Since the infinite word $\xi = \xi_1 \xi_2 \dots$ is invariant under the substitution σ , it follows that $\xi = \sigma^n(\xi) = \sigma^n(\xi_1)\sigma^n(\xi_2)\dots$ Lemma 2.2 implies that $\xi_N = a$ if and only if N is odd. Therefore $\xi = w_n s_1 w_n s_2 w_n s_3 \dots$, where each $s_i \in \{b, c, d\}$. By Lemma 2.1, the length of the word w_n is $2^n - 1$. It follows that any subword of length 2^n in ξ is of the form w_-lw_+ , where $l \in \{b, c, d\}, w_+$ is a beginning of w_n , and w_- is an ending of w_n . Since the concatenated word w_+w_- has the same length as w_n , it has to coincide with w_n . Then the word w_-lw_+ can be obtained from w_nl by a cyclic permutation of letters.

It turns out that the representation of the infinite word ξ as $w_n s_1 w_n s_2 w_n s_3 \dots$, where each $s_i \in \{b, c, d\}$, does not show all occurrences of w_n as a subword in ξ . There are more occurrences, they overlap with the shown ones. As a result, it is not true that any occurrence of w_n in ξ is immediately followed by bw_n , cw_n , or dw_n . For example, some occurrences of $w_2 = aca$ are followed by caba. The next three lemmas explain what can follow and what can precede a particular occurrence of w_n .

Lemma 2.5 Any occurrence of the word $w_n l_n$ in ξ is immediately followed by $w_n b$, $w_n c$, or $w_n d$ and, unless it is the beginning of ξ , immediately preceded by $w_n b$, $w_n c$, or $w_n d$.

Proof. The proof is by induction on n. First consider the case n = 1. By Lemma 2.2, $\xi_N = a$ if and only if N is odd. Therefore every occurrence of $w_1l_1 = ac$ in ξ is immediately followed by ab, ac, or ad and, unless it is the beginning of ξ , immediately preceded by ab, ac, or ad.

Now let $k \geq 1$ and assume the lemma holds for n = k. Suppose $\xi_{N+1}\xi_{N+2}...\xi_{N+M}$ is an occurrence of the word $w_{k+1}l_{k+1}$ in ξ . The first four letters of $w_{k+1}l_{k+1}$ are *acab* so that $\xi_{N+4} = b$. Lemma 2.2 implies that N + 4 is divisible by 4. Besides, $M = 2^{k+1}$ due to Lemma 2.1. Hence N and M are both divisible by 4, i.e., N = 4N' and M = 4M' for some $M', N' \in \mathbb{Z}$. Since $\xi_{N+1}\xi_{N+2}...\xi_{N+M} = w_{k+1}l_{k+1} = \sigma(w_k l_k)$, it follows from Lemma 2.3 that $\xi_{2N'+1}\xi_{2N'+2}...\xi_{2N'+2M'}$ is an occurrence of $w_k l_k$. By the inductive assumption, $\xi_{2N'+2M'+1}\xi_{2N'+2M'+2}\ldots\xi_{2N'+4M'}$ is an occurrence of $w_k b$, $w_k c$, or $w_k d$ and, unless N' = 0, we have $N' \ge M'$ and $\xi_{2N'-2M'+1}\xi_{2N'-2M'+2}\ldots\xi_{2N'}$ is also an occurrence of $w_k b$, $w_k c$, or $w_k d$. Applying Lemma 2.3 two more times, we obtain that $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M}$ is immediately followed by $\sigma(w_k b) = w_{k+1}d$, $\sigma(w_k c) = w_{k+1}b$, or $\sigma(w_k d) = w_{k+1}c$ and, unless N = 0, immediately preceded by one of the same three words. This completes the induction step.

Lemma 2.6 Any occurrence of the word $w_n l_{n+1}$ in ξ is immediately followed by $w_n l_n$ and immediately preceded by another $w_n l_n$.

Proof. The proof is by induction on n. First consider the case n = 1. By Lemma 2.2, $\xi_N = a$ if N is odd and $\xi_N = c$ if N is even while not divisible by 4. It follows that every occurrence of b or d in ξ is immediately followed and immediately preceded by aca. Therefore every occurrence of $w_1l_2 = ab$ is immediately followed and preceded by $ac = w_1l_1$.

Now let $k \ge 1$ and assume the lemma holds for n = k. Suppose $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M}$ is an occurrence of the word $w_{k+1}l_{k+2}$ in ξ . The first four letters of $w_{k+1}l_{k+2}$ are *acab* (if k > 1) or *acad* (if k = 1). In either case, Lemma 2.2 implies that N + 4 is divisible by 4. Besides, $M = 2^{k+1}$ due to Lemma 2.1. Hence N and M are both divisible by 4, i.e., N = 4N' and M = 4M' for some $M', N' \in \mathbb{Z}$. Since $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M} = w_{k+1}l_{k+2} = \sigma(w_k l_{k+1})$, it follows from Lemma 2.3 that $\xi_{2N'+1}\xi_{2N'+2}\ldots\xi_{2N'+2M'}$ is an occurrence of $w_k l_{k+1}$. By the inductive assumption, $N' \ge M'$ and

$$\xi_{2N'+2M'+1}\xi_{2N'+2M'+2}\dots\xi_{2N'+4M'}=\xi_{2N'-2M'+1}\xi_{2N'-2M'+2}\dots\xi_{2N'}=w_kl_k.$$

Applying Lemma 2.3 two more times, we obtain that $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M}$ is immediately followed and immediately preceded by $\sigma(w_k l_k) = w_{k+1} l_{k+1}$. This completes the induction step.

Lemma 2.7 Any occurrence of the word $w_{n+1}l_n = w_n l_n w_n l_n$ in ξ is immediately followed and immediately preceded by the same word of length 2^{n+1} , which can be either $w_n l_n w_n l_{n+1}$ or $w_n l_{n+1} w_n l_n$.

Proof. The proof is by induction on n. First consider the case n = 1. By Lemma 2.2, $\xi_N = a$ if N is odd, $\xi_N = c$ if N is even but not divisible by 4, and $\xi_N = b$ if N is divisible by 4 but not by 8. Suppose $\xi_{M+1}\xi_{M+2}\xi_{M+3}\xi_{M+4}$ is an occurrence of $w_2l_1 = acac$ in ξ . Then M is even. Moreover, the one of the numbers M + 2 and M + 4 that is divisible by 4 must be divisible by 8 as well. In particular, $M \ge 4$. If M + 4 is divisible by 8 then $\xi_{M+5}\xi_{M+6}\xi_{M+7}\xi_{M+8} = \xi_{M-3}\xi_{M-2}\xi_{M-1}\xi_M = acab = w_1l_1w_1l_2$. If M + 2 is divisible by 8 then $\xi_{M+5}\xi_{M+6}\xi_{M+7}\xi_{M+8} = \xi_{M-3}\xi_{M-2}\xi_{M-1}\xi_M = abac = w_1l_2w_1l_1$.

Now let $k \geq 1$ and assume the lemma holds for n = k. Suppose $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M}$ is an occurrence of the word $w_{k+2}l_{k+1}$ in ξ . The first four letters of $w_{k+2}l_{k+1}$ are *acab* so that $\xi_{N+4} = b$. Lemma 2.2 implies that N + 4 is divisible by 4. Besides, $M = 2^{k+2}$ due to Lemma 2.1. Hence N and M are both divisible by 4, i.e., N = 4N' and M = 4M' for some $M', N' \in \mathbb{Z}$. Since $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M} = w_{k+2}l_{k+1} = \sigma(w_{k+1}l_k)$, it follows from Lemma 2.3 that $\xi_{2N'+1}\xi_{2N'+2}\ldots\xi_{2N'+2M'}$ is an occurrence of $w_{k+1}l_k$. By the inductive assumption, this occurrence is immediately followed and immediately preceded by the same word u of even length, where $u = w_k l_k w_k l_{k+1}$ or $u = w_k l_{k+1} w_k l_k$. Applying Lemma 2.3 two more times, we obtain that $\xi_{N+1}\xi_{N+2}\ldots\xi_{N+M}$ is immediately followed and immediately preceded by $\sigma(u)$. Note that $\sigma(u) = \sigma(w_k l_k w_k l_{k+1}) = w_{k+1} l_{k+1} w_{k+1} l_{k+2}$ or $\sigma(u) = \sigma(w_k l_{k+1} w_k l_k) = w_{k+1} l_{k+2} w_{k+1} l_{k+1}$. The length of $\sigma(u)$ is 2^{k+2} due to Lemma 2.1. This completes the induction step.

Next we are going to derive some properties of the cylinders in Ω .

Lemma 2.8 Let $n \ge 2$. Then the cylinder $[.w_n]$ is disjoint from $T^N([.w_n])$ for $1 \le N < 2^{n-1}$.

Proof. Let $n \ge 2$ and suppose the cylinder $[.w_n]$ is not disjoint from $T^N([.w_n])$ for some $N \ge 1$. We need to show that $N \ge 2^{n-1}$. Take any element $\omega = \ldots \omega_{-2}\omega_{-1}\omega_0.\omega_1\omega_2\ldots$ of the intersection $[.w_n] \cap T^N([.w_n])$. Then ω and $T^{-N}(\omega)$ are both in $[.w_n]$. By construction of the infinite word $\xi = \xi_1\xi_2\ldots$, the word w_n is a beginning of ξ . The length of w_n is $2^n - 1$ due to Lemma 2.1. Since ω and $T^{-N}(\omega)$ belong to $[.w_n]$, it follows that $\omega_i = \omega_{i-N} = \xi_i$ for $1 \le i \le 2^n - 1$. As a consequence, $\xi_i = \xi_{i+N}$ whenever $1 \le i < i + N \le 2^n - 1$.

The integer N is uniquely represented as $N = 2^k K$, where $k \ge 0$ and K is odd. By Lemma 2.2, $\xi_N = l_k$ if $k \ge 1$ and $\xi_N = a$ if k = 0. By the same lemma, $\xi_{2N} = l_{k+1}$, which implies that $\xi_N \ne \xi_{2N} = \xi_{N+N}$. Then it follows from the above that $2N > 2^n - 1$. Since N is an integer, this is equivalent to $2N \ge 2^n$ or $N \ge 2^{n-1}$.

Lemma 2.9 $[l.w_nl_n] = [w_nl.w_nl_nw_n]$ and $[l_n.w_nl] = [w_nl_n.w_nlw_n]$ for all $l \in \{b, c, d\}$ and $n \ge 1$. Moreover, if $l \ne l_n$ then $[l.w_nl_n] = [w_nl_nw_nl_n]$.

Proof. By Lemma 2.5, any occurrence of the word $w_n l_n$ in ξ is immediately followed by $w_n b$, $w_n c$, or $w_n d$ and, unless it is the beginning of ξ , immediately preceded by $w_n b$, $w_n c$, or $w_n d$. As a consequence, any occurrence of $lw_n l_n$ is immediately followed and preceded by w_n . This implies an equality of cylinders $[l.w_n l_n] = [w_n l.w_n l_n] = [w_n l.w_n l_n w_n]$. In the case $l = l_n$, we are done. In the other cases, two more equalities are to be derived.

Next consider the case $l = l_{n+1}$. By Lemma 2.6, any occurrence of the word $w_n l_{n+1}$ in ξ is immediately followed and preceded by $w_n l_n$. Therefore any occurrence of $l_n w_n l$ is immediately followed and preceded by w_n so that $[l_n . w_n l] = [w_n l_n . w_n l w_n]$. Besides, this implies that $[w_n l_n w_n l_n] = [w_n l_n . w_n l_n]$. We already know that $[w_n l_n . w_n l_n] = [l_n . w_n l_n]$.

Now consider the case when $l \neq l_n$, $l \neq l_{n+1}$, and $n \geq 2$. In this case, $l = l_{n-1}$. By Lemma 2.7, any occurrence of the word $w_n l_{n-1} = w_{n-1} l_{n-1} w_{n-1} l_{n-1}$ in ξ is immediately followed and preceded by the same word of length 2^n , which can be either $w_{n-1} l_{n-1} w_{n-1} l_n = w_n l_n$ or $w_{n-1} l_n w_{n-1} l_{n-1}$. Therefore any occurrence of $l_n w_n l$ is immediately followed and preceded by w_n so that $[l_n . w_n l] = [w_n l_n . w_n l w_n]$. Another consequence is that $[w_n l_n w_n l.] = [w_n l_n w_n l w_n l] = [w_n l_n . w_n l w_n]$. We already know that $[w_n l. w_n l_n] = [l. w_n l_n]$.

It remains to consider the case when $l \neq l_n$, $l \neq l_{n+1}$, and n = 1. In this case, $w_n = a$, $l_n = c$, and l = d. As already observed in the proof of Lemma 2.6, every occurrence of the letter d in ξ is immediately followed and preceded by *aca*. Therefore [c.ad] = [ac.ada] and [d.ac] = [acad.aca] = [acad.].

The following lemma is crucial for the proof of Theorem 1.10.

Lemma 2.10 If C is a nonempty cylinder of dimension 2^n , then $C = T^N([.w_n l])$ for some $l \in \{b, c, d\}$ and $N \in \mathbb{Z}$.

Proof. Let C be a nonempty cylinder of dimension 2^n . We have $C = [w_-.w_+]$ for some words w_- and w_+ such that the concatenated word $w = w_-w_+$ has length 2^n . Since C is a nonempty set, the word w must occur as a subword in the infinite word ξ . By Lemma 2.4, w can be obtained from a word $w_n l$, $l \in \{b, c, d\}$, by a cyclic permutation of letters. We are going to show that $[.w] = T^N([.w_n l])$ for some $N \in \mathbb{Z}$. Then $C = T^M([.w]) = T^{M+N}([.w_n l])$, where M is the length of w_- .

First consider the case n = 1. In this case, $w = w_1 l = al$ or w = la. By Lemma 2.2, $\xi_N = a$ if and only if N is odd. Hence every occurrence of the letter l in ξ is immediately followed and preceded by a. Therefore [.la] = [.l] = [a.l] = T([.al]).

Now assume $n \geq 2$. In this case, $w_n = w_{n-1}l_{n-1}w_{n-1}$ due to Lemma 2.1. Let u_1 and u_2 be words such that $w_n l = u_1 u_2$ and $w = u_2 u_1$. If u_2 is longer than u_1 , then $l_{n-1}w_{n-1}l$ is an ending of u_2 , i.e., $u_2 = u'_2 l_{n-1}w_{n-1}l$ for some word u'_2 . Clearly, $w = u'_2 l_{n-1}w_{n-1}lu_1$ and $u_1u'_2 = w_{n-1}$. If u_2 is not longer than u_1 and not empty, we have $u_1 = w_{n-1}l_{n-1}u'_1$ and $u_2 = u'_2 l$ for some words u'_1 and u'_2 . Then $w = u'_2 lw_{n-1}l_{n-1}u'_1$ and $u'_1u'_2 = w_{n-1}$. Finally, if u_2 is empty, then $w = w_n l = w_{n-1}l_{n-1}w_{n-1}l = u'_2 l_{n-1}w_{n-1}lu'_1$, where u'_1 is the empty word and $u'_2 = w_{n-1}$.

By the above the word w can be represented as $u'_{2}l_{n-1}w_{n-1}lu'_{1}$ or $u'_{2}lw_{n-1}l_{n-1}u'_{1}$, where the words u'_{1} and u'_{2} satisfy $u'_{1}u'_{2} = w_{n-1}$. Note that both representations are the same if $l = l_{n-1}$ (also, in this case there are two different choices for the pair u_{1}, u_{2}). First assume that $w = u'_{2}l_{n-1}w_{n-1}lu'_{1}$. Since u'_{1} is a beginning of w_{n-1} and u'_{2} is an ending of w_{n-1} , it follows that $[w_{n-1}l_{n-1}.w_{n-1}lw_{n-1}] \subset [u'_{2}l_{n-1}.w_{n-1}lu'_{1}] \subset [l_{n-1}.w_{n-1}l]$. Similarly, $[w_{n-1}l_{n-1}.w_{n-1}lw_{n-1}] \subset$ $[w_{n-1}l_{n-1}.w_{n-1}l] \subset [l_{n-1}.w_{n-1}l]$. Since $[w_{n-1}l_{n-1}.w_{n-1}lw_{n-1}] = [l_{n-1}.w_{n-1}l]$ due to Lemma 2.9, we obtain that $[u'_{2}l_{n-1}.w_{n-1}lu'_{1}] = [w_{n-1}l_{n-1}.w_{n-1}l]$. The latter equality can be rewritten as $T^{N_{1}}([.w]) = T^{N_{2}}([.w_{n}l])$, where N_{1} is the length of $u'_{2}l_{n-1}$ and N_{2} is the length of $w_{n-1}l_{n-1}$ $(N_{2} = 2^{n-1})$. Then $[.w] = T^{N_{2}-N_{1}}([.w_{n}l])$.

Now assume that $l \neq l_{n-1}$ and $w = u'_2 l w_{n-1} l_{n-1} u'_1$. Just like in the previous case, we obtain that $[w_{n-1}l.w_{n-1}l_{n-1}w_{n-1}] \subset [u'_2 l.w_{n-1}l_{n-1}u'_1] \subset [l.w_{n-1}l_{n-1}]$. By Lemma 2.9, $[w_{n-1}l.w_{n-1}l_{n-1}w_{n-1}] = [l.w_{n-1}l_{n-1}] = [w_{n-1}l_{n-1}w_{n-1}l_{n-1}]$. It follows that $[u'_2 l.w_{n-1}l_{n-1}u'_1] = [w_{n-1}l_{n-1}w_{n-1}l_{n-1}]$. The latter equality can be rewritten as $T^{N_1}([.w]) = T^{N_2}([.w_n l])$, where N_1 is the length of $u'_2 l$ and N_2 is the length of $w_n l$ $(N_2 = 2^n)$. Then $[.w] = T^{N_2-N_1}([.w_n l])$.

The next three lemmas establish relations between cylinders of dimension 2^n and cylinders of dimension 2^{n+1} . We shall use \sqcup to denote disjoint unions. Namely, $U = U_1 \sqcup U_2 \sqcup \ldots \sqcup U_k$ means that $U = U_1 \cup U_2 \cup \ldots \cup U_k$ and the sets U_1, U_2, \ldots, U_k are pairwise disjoint.

Lemma 2.11 $[.w_n l_n] = [.w_{n+1}b] \sqcup [.w_{n+1}c] \sqcup [.w_{n+1}d]$ for all $n \ge 1$.

Proof. The cylinders $[.w_{n+1}b]$, $[.w_{n+1}c]$, and $[.w_{n+1}d]$ are clearly disjoint. Since $w_{n+1} = w_n l_n w_n$ (due to Lemma 2.1), each of them is contained in $[.w_n l_n]$. Lemma 2.5 implies that the union of the three cylinders is exactly $[.w_n l_n]$.

Lemma 2.12 $[.w_n l_{n+1}] = T^{2^n}([.w_{n+1} l_{n+1}])$ for all $n \ge 1$.

Proof. Lemma 2.6 implies that $[.w_n l_{n+1}] = [w_n l_n . w_n l_{n+1}]$. Since the length of the word $w_n l_n$ is 2^n , we obtain that $[.w_n l_{n+1}] = T^{2^n}([.w_n l_n w_n l_{n+1}])$. It remains to notice that $w_n l_n w_n = w_{n+1}$.

Lemma 2.13 $[.w_{n+1}l_n] = T^{2^{n+1}}([.w_{n+2}l_n]) \sqcup T^{3 \cdot 2^n}([.w_{n+2}l_n])$ for all $n \ge 1$.

Proof. Lemma 2.7 implies that the cylinder $[.w_{n+1}l_n] = [.w_nl_nw_nl_n]$ is the union of cylinders $C_1 = [w_nl_nw_nl_{n+1}.w_nl_nw_nl_n]$ and $C_2 = [w_nl_{n+1}w_nl_n.w_nl_nw_nl_n]$, which are disjoint since l_{n+1} is always different from l_n . Lemma 2.6 further implies that $C_2 = [w_nl_nw_nl_{n+1}w_nl_n.w_nl_nw_nl_n]$. Then it follows from Lemma 2.7 that $C_2 = [w_nl_nw_nl_{n+1}w_nl_n.w_nl_n]$.

Notice that $w_n l_n w_n l_{n+1} w_n l_n w_n l_n = w_{n+1} l_{n+1} w_{n+1} l_n = w_{n+2} l_n$. Since the word $w_n l_n w_n l_{n+1}$ has length 2^{n+1} and the word $w_n l_n w_n l_{n+1} w_n l_n$ has length $3 \cdot 2^n$, we obtain that $C_1 = T^{2^{n+1}}([.w_{n+2} l_n])$ and $C_2 = T^{3 \cdot 2^n}([.w_{n+2} l_n])$.

3 General topological full group

We proceed to the study of the topological full group [[T]]. Let us begin with some general properties of transformations $\Psi_{U,M,N}$ that hold for any homeomorphism $T: X \to X$ of a Cantor set X onto itself.

Lemma 3.1 If $\Psi_{U,M,N}$ is well defined for a clopen set U and integers M, N, M < N, then $\Psi_{T^{K}(U),M+J,N+J}$ is well defined for any $J, K \in \mathbb{Z}$ and $\Psi_{T^{K}(U),M+J,N+J} = T^{J+K}\Psi_{U,M,N}T^{-J-K}$.

Proof. Since $\Psi_{U,M,N}$ is well defined, the sets $T^M(U), T^{M+1}(U), \ldots, T^N(U)$ are pairwise disjoint. Since T is an invertible transformation, it follows that for any $J \in \mathbb{Z}$ the sets $T^{M+J}(U), T^{M+J+1}(U), \ldots, T^{N+J}(U)$ are also pairwise disjoint. Hence $\Psi_{U,M+J,N+J}$ is defined as well. Suppose $x \in X$ and let $y = T^{-J}(x)$. Then $\Psi_{U,M+J,N+J}(x) = T^n(x)$ for a specific n (which can be 0, 1, or M-N) if and only if $\Psi_{U,M,N}(y) = T^n(y)$. It follows that $\Psi_{U,M+J,N+J} = T^J \Psi_{U,M,N} T^{-J}$.

Given $K \in \mathbb{Z}$, let $V = T^{K}(U)$. Then V is a clopen set and $T^{i}(V) = T^{i+K}(U)$ for all $i \in \mathbb{Z}$. It follows that $\Psi_{V,M',N'} = \Psi_{U,M'+K,N'+K}$ whenever one of these transformations is defined. In particular, $\Psi_{V,M+J,N+J} = \Psi_{U,M+J+K,N+J+K}$ for all $J \in \mathbb{Z}$. By the above, $\Psi_{U,M+J+K,N+J+K} = T^{J+K} \Psi_{U,M,N} T^{-J-K}$.

Lemma 3.2 Suppose $\Psi_{U,M,N}$ is well defined and $U = U_1 \sqcup U_2 \sqcup \ldots \sqcup U_k$, where U_1, U_2, \ldots, U_k are clopen sets. Then transformations $\Psi_{U_i,M,N}$, $1 \le i \le k$ are also well defined, they commute with one another, and $\Psi_{U,M,N} = \Psi_{U_1,M,N} \Psi_{U_2,M,N} \ldots \Psi_{U_k,M,N}$.

Proof. Since $\Psi_{U,M,N}$ is well defined, the sets $T^M(U), T^{M+1}(U), \ldots, T^N(U)$ are pairwise disjoint. Since each U_i is a subset of U, the sets $T^M(U_i), T^{M+1}(U), \ldots, T^N(U_i)$ are also pairwise disjoint. Hence $\Psi_{U_i,M,N}$ is defined as well. The transformation $\Psi_{U_i,M,N}$ coincides

with $\Psi_{U,M,N}$ on the set $\widetilde{U}_i = T^M(U_i) \cup T^{M+1}(U_i) \cup \cdots \cup T^N(U_i)$ and with the identity map anywhere else. Since $U = U_1 \sqcup U_2 \sqcup \ldots \sqcup U_k$, it follows that $T^J(U) = T^J(U_1) \sqcup T^J(U_2) \sqcup \ldots \sqcup T^J(U_k)$ for all $J \in \mathbb{Z}$. As a consequence, $T^M(U) \cup T^{M+1}(U) \cup \cdots \cup T^N(U) = \widetilde{U}_1 \sqcup \widetilde{U}_2 \sqcup \ldots \sqcup \widetilde{U}_k$. This implies that transformations $\Psi_{U_1,M,N}, \Psi_{U_2,M,N}, \ldots, \Psi_{U_k,M,N}$ commute with one another and $\Psi_{U_1,M,N} \Psi_{U_2,M,N} \ldots \Psi_{U_k,M,N} = \Psi_{U,M,N}$.

Lemma 3.3 If $\Psi_{U,M,N}$ is well defined and $N - M \ge 2$, then $\Psi_{U,M,N} = \Psi_{U,M,K} \Psi_{U,K,N}$ for any K, M < K < N.

Proof. Since $\Psi_{U,M,N}$ is well defined, the sets $T^M(U), T^{M+1}(U), \ldots, T^N(U)$ are pairwise disjoint. It follows that transformations $\Psi_{U,M,K}$ and $\Psi_{U,K,N}$ are well defined for any K, M < K < N. We need to show that $\Psi_{U,M,N}(x) = \Psi_{U,M,K}(\Psi_{U,K,N}(x))$ for all $x \in X$. First consider the case $x \in T^i(U)$, where $M \leq i \leq K - 1$. Then $x \notin T^j(U)$ for $K \leq j \leq N$. Hence x is fixed by $\Psi_{U,K,N}$. Consequently, $\Psi_{U,M,K}(\Psi_{U,K,N}(x)) = \Psi_{U,M,K}(x) = T(x)$, which coincides with $\Psi_{U,M,N}(x)$.

Next consider the case $x \in T^i(U)$, where $K \leq i \leq N-1$. In this case, $\Psi_{U,K,N}(x) = T(x)$. Since $T(x) \in T^{i+1}(U)$ and $K+1 \leq i+1 \leq N$, it follows that $T(x) \notin T^j(U)$ for $M \leq j \leq K$. Hence T(x) is fixed by $\Psi_{U,M,K}$ so that $\Psi_{U,M,K}(\Psi_{U,K,N}(x)) = T(x) = \Psi_{U,M,N}(x)$.

Now consider the case $x \in T^N(U)$. In this case, $\Psi_{U,K,N}(x) = T^{K-N}(x)$, which belongs to $T^K(U)$. Then $\Psi_{U,M,K}(\Psi_{U,K,N}(x)) = \Psi_{U,M,K}(T^{K-N}(x)) = T^{M-K}(T^{K-N}(x)) = T^{M-N}(x)$, which coincides with $\Psi_{U,M,N}(x)$.

Finally, if $x \notin T^i(U)$ for all $i, M \leq i \leq N$, then x is fixed by all three transformations. In particular, $\Psi_{U,M,K}(\Psi_{U,K,N}(x)) = x = \Psi_{U,M,N}(x)$.

Lemma 3.4 Suppose $\Psi_{U,M,K}$ and $\Psi_{V,K,N}$ are well defined. If $T^i(V) \cap U = \emptyset$ for $1 \le i \le N - M$, then $\Psi_{V,K,N}\Psi_{U,M,K}^{-1}\Psi_{V,K,N}\Psi_{U,M,K} = \Psi_{U \cap V,K-1,K+1}$.

Proof. Since $\Psi_{U,M,K}$ is well defined, the sets $T^M(U), T^{M+1}(U), \ldots, T^K(U)$ are pairwise disjoint. Since $\Psi_{V,K,N}$ is well defined, the sets $T^K(V), T^{K+1}(V), \ldots, T^N(V)$ are pairwise disjoint. Further, $T^i(U) \cap T^j(V) = T^i(U \cap T^{j-i}(V))$ for all $i, j \in \mathbb{Z}$. Therefore $T^i(U)$ is disjoint from $T^j(V)$ whenever $1 \leq j - i \leq N - M$. In particular, the two sets are disjoint if $M \leq i \leq K \leq j \leq N$ and at least one of the numbers i and j is different from K. It follows that sets $T^M(U), T^{M+1}(U), \ldots, T^{K-1}(U), T^K(U) \cup T^K(V) = T^K(U \cup V),$ $T^{K+1}(V), \ldots, T^{N-1}(V), T^N(V)$ are pairwise disjoint.

Let $W = U \cap V$, $Y = U \setminus W$, and $Z = V \setminus W$. Then W, Y, and Z are clopen sets. We have $U = W \sqcup Y$, $V = W \sqcup Z$, and $U \cup V = W \sqcup Y \sqcup Z$. By Lemma 3.2, $\Psi_{U,M,K} = \Psi_{W,M,K} \Psi_{Y,M,K}$ and $\Psi_{V,K,N} = \Psi_{W,K,N} \Psi_{Z,K,N}$. The transformation $\Psi_{Y,M,K}$ moves points only within the set $\widetilde{Y} = T^M(Y) \cup T^{M+1}(Y) \cup \cdots \cup T^K(Y)$. Likewise, $\Psi_{Z,K,N}$ moves points only within the set $\widetilde{Z} = T^K(Z) \cup T^{K+1}(Z) \cup \cdots \cup T^N(Z)$. The transformations $\Psi_{W,M,K}$ and $\Psi_{W,K,N}$ do not move points outside of the set $\widetilde{W} = T^M(W) \cup T^{M+1}(W) \cup \cdots \cup T^N(W)$. Note that $T^i(U) = T^i(W) \sqcup T^i(Y)$ for $M \leq i \leq K-1$, $T^i(V) = T^i(W) \sqcup T^i(Z)$ for $K+1 \leq i \leq N$, and $T^K(U \cup V) = T^K(W) \sqcup T^K(Y) \sqcup T^K(Z)$. It follows that the sets \widetilde{W} , \widetilde{Y} , and \widetilde{Z} are pairwise

disjoint. This implies that the transformations $\Psi_{Y,M,K}$ and $\Psi_{Z,K,N}$ commute with $\Psi_{W,M,K}$, $\Psi_{W,K,N}$, and with each other. Then

$$\Psi_{V,K,N}\Psi_{U,M,K}^{-1}\Psi_{V,K,N}^{-1}\Psi_{U,M,K} =$$

$$= (\Psi_{W,K,N}\Psi_{Z,K,N})(\Psi_{W,M,K}\Psi_{Y,M,K})^{-1}(\Psi_{W,K,N}\Psi_{Z,K,N})^{-1}(\Psi_{W,M,K}\Psi_{Y,M,K})$$

$$= \Psi_{W,K,N}\Psi_{Z,K,N}\Psi_{Y,M,K}^{-1}\Psi_{W,M,K}^{-1}\Psi_{Z,K,N}^{-1}\Psi_{W,K,N}^{-1}\Psi_{W,M,K}\Psi_{Y,M,K}$$

$$= \Psi_{W,K,N}\Psi_{W,M,K}^{-1}(\Psi_{Z,K,N}\Psi_{Y,M,K}^{-1}\Psi_{Z,K,N}^{-1}\Psi_{Y,M,K})\Psi_{W,M,K}^{-1}\Psi_{W,M,K}$$

$$= \Psi_{W,K,N}\Psi_{W,M,K}^{-1}\Psi_{W,M,K}^{-1}\Psi_{W,K,N}^{-1}\Psi_{W,M,K}.$$

Let $L = \Psi_{W,M,K-1}$ if M < K-1 and let L be the identity map otherwise. Let $R = \Psi_{W,K+1,N}$ if K+1 < N and let R be the identity map otherwise. It follows from Lemma 3.3 that $\Psi_{W,M,K} = L\Psi_{W,K-1,K}$ and $\Psi_{W,K,N} = \Psi_{W,K,K+1}R$. The transformation L fixes all points in the set $T^{K}(W) \cup T^{K+1}(W) \cup \cdots \cup T^{N}(W)$, which implies that L commutes with $\Psi_{W,K,K+1}$ and R. Similarly, R fixes all points in the set $T^{M}(W) \cup T^{M+1}(W) \cup \cdots \cup T^{K}(W)$, which implies that R commutes with $\Psi_{W,K-1,K}$ and L. Then

$$\begin{split} \Psi_{W,K,N}\Psi_{W,M,K}^{-1}\Psi_{W,K,N}^{-1}\Psi_{W,M,K} &= (\Psi_{W,K,K+1}R)(L\Psi_{W,K-1,K})^{-1}(\Psi_{W,K,K+1}R)^{-1}(L\Psi_{W,K-1,K}) \\ &= \Psi_{W,K,K+1}R\Psi_{W,K-1,K}^{-1}L^{-1}R^{-1}\Psi_{W,K,K+1}^{-1}L\Psi_{W,K-1,K} \\ &= \Psi_{W,K,K+1}\Psi_{W,K-1,K}^{-1}(RL^{-1}R^{-1}L)\Psi_{W,K,K+1}^{-1}\Psi_{W,K-1,K} \\ &= \Psi_{W,K,K+1}\Psi_{W,K-1,K}^{-1}\Psi_{W,K-1,K}^{-1}\Psi_{W,K-1,K}. \end{split}$$

Since $\Psi_{W,K-1,K}$ and $\Psi_{W,K,K+1}$ are involutions, we obtain that

$$\Psi_{W,K,K+1}\Psi_{W,K-1,K}^{-1}\Psi_{W,K,K+1}^{-1}\Psi_{W,K-1,K} = (\Psi_{W,K,K+1}\Psi_{W,K-1,K})^2 = (\Psi_{W,K-1,K}\Psi_{W,K,K+1})^{-2}.$$

It follows from the above that sets $T^M(W), \ldots, T^{K-1}(W), T^K(W), T^{K+1}(W), \ldots, T^N(W)$ are pairwise disjoint. In particular, the transformation $\Psi_{W,K-1,K+1}$ is well defined. We have $\Psi_{W,K-1,K}\Psi_{W,K,K+1} = \Psi_{W,K-1,K+1}$ due to Lemma 3.3 and $\Psi_{W,K-1,K+1}^{-2} = \Psi_{W,K-1,K+1}$ since $\Psi_{W,K-1,K+1}$ has order 3.

4 Topological full group of the substitution subshift

Now we restrict our attention to the substitution subshift $T : \Omega \to \Omega$. Let G be the subgroup of [[T]] generated by transformations T, $\delta_{[.b]}$, $\delta_{[.d]}$, and $\delta_{[.acacac]}$. For any $n \ge 1$ let G_n be the subgroup of [[T]] generated by $\delta_{[.w_nb]}$, $\delta_{[.w_nc]}$, $\delta_{[.w_nd]}$, and T.

Lemma 4.1 $G_3 = G$.

Proof. First we show that the group G_3 contains $\delta_{[.w_2b]}$. By Lemma 2.11, $[.w_2b] = [.w_3b] \sqcup [.w_3c] \sqcup [.w_3d]$. Then Lemma 3.2 implies that $\delta_{[.w_2b]} = \delta_{[.w_3b]}\delta_{[.w_3c]}\delta_{[.w_3d]}$.

By Lemma 2.2, $\xi_i = a$ if *i* is odd, $\xi_i = c$ if *i* is even but not divisible by 4, and $\xi_i = b$ if *i* is divisible by 4 but not by 8. It follows that every occurrence of the letter *b* in ξ is immediately preceded by *aca* while every occurrence of *d* is preceded by *acabaca*. As a consequence, $[.b] = [aca.b] = T^3([.w_2b])$ and $[.d] = [acabaca.d] = T^7([.w_3d])$. Besides, Lemma 2.7 implies that $[.acacac] = [acab.acacacacab] = [acab.acacc] = T^4([.w_3c])$. By Lemma 3.1, $\delta_{[.b]} = T^3 \delta_{[.w_2b]} T^{-3}$, $\delta_{[.d]} = T^7 \delta_{[.w_3d]} T^{-7}$, and $\delta_{[.acacac]} = T^4 \delta_{[.w_3c]} T^{-4}$. Therefore all generators of the group *G* belong to G_3 so that $G \subset G_3$.

Conversely, it follows from the above that $\delta_{[.w_2b]} = T^{-3}\delta_{[.b]}T^3$, $\delta_{[.w_3c]} = T^{-4}\delta_{[.acacac]}T^4$, $\delta_{[.w_3d]} = T^{-7}\delta_{[.d]}T^7$, and

$$\delta_{[.w_3b]} = \delta_{[.w_2b]}\delta_{[.w_3d]}^{-1}\delta_{[.w_3c]}^{-1} = \delta_{[.w_2b]}\delta_{[.w_3d]}\delta_{[.w_3c]}$$

= $(T^{-3}\delta_{[.b]}T^3)(T^{-7}\delta_{[.d]}T^7)(T^{-4}\delta_{[.acacac]}T^4) = T^{-3}\delta_{[.b]}T^{-4}\delta_{[.d]}T^3\delta_{[.acacac]}T^4.$

Therefore all generators of the group G_3 belong to G so that $G_3 \subset G$.

As a follow-up to the previous proof, let us derive the formulas for $\delta_{[.a]}$ and $\delta_{[.c]}$. We begin with some auxiliary formulas. By Lemma 2.13, $[.acac] = T^4([.w_3c]) \sqcup T^6([.w_3c])$. Then Lemmas 3.1 and 3.2 imply that

$$\delta_{[.acac]} = (T^4 \delta_{[.w_3c]} T^{-4}) (T^6 \delta_{[.w_3c]} T^{-6}) = T^4 \delta_{[.w_3c]} T^2 \delta_{[.w_3c]} T^{-6}$$

Since $\delta_{[.w_3c]} = T^{-4}\delta_{[.acaccac]}T^4$, we obtain that $\delta_{[.acac]} = \delta_{[.acaccac]}T^2\delta_{[.acaccac]}T^{-2}$. Further, $[.acad] = T^4([.w_3d])$ due to Lemma 2.12. Hence $\delta_{[.acad]} = T^4\delta_{[.w_3d]}T^{-4} = T^4(T^{-7}\delta_{[.d]}T^7)T^{-4} = T^{-3}\delta_{[.d]}T^3$. Next, $[.ac] = [.acab] \sqcup [.acac] \sqcup [.acad]$ due to Lemma 2.12. By Lemma 3.2,

$$\delta_{[.ac]} = \delta_{[.acab]} \delta_{[.acad]} \delta_{[.acac]} = (T^{-3} \delta_{[.b]} T^3) (T^{-3} \delta_{[.d]} T^3) (\delta_{[.acacac]} T^2 \delta_{[.acacac]} T^{-2})$$

= $T^{-3} \delta_{[.b]} \delta_{[.d]} T^3 \delta_{[.acacac]} T^2 \delta_{[.acacac]} T^{-2}.$

Finally, [.c] = [a.c] = T([.ac]) so that

$$\delta_{[.c]} = T\delta_{[.ac]}T^{-1} = T^{-2}\delta_{[.b]}\delta_{[.d]}T^{3}\delta_{[.acaccac]}T^{2}\delta_{[.acaccac]}T^{-3}.$$

Since $[.a] = T^{-1}([a.])$ and $[a.] = [.b] \sqcup [.c] \sqcup [.d]$, it follows from Lemma 3.2 that $\delta_{[a.]} = \delta_{[.b]} \delta_{[.d]} \delta_{[.c]}$ and then from Lemma 3.1 that

$$\delta_{[.a]} = T^{-1} \delta_{[a.]} T = T^{-1} \delta_{[.b]} \delta_{[.c]} T = T^{-1} \delta_{[.b]} \delta_{[.d]} T^{-2} \delta_{[.b]} \delta_{[.d]} T^{3} \delta_{[.acacac]} T^{2} \delta_{[.acacac]} T^{-2}.$$

Lemma 4.2 Any given transformation of the form δ_U is contained in the group G_n for n large enough.

Proof. If U is an empty set, then δ_U is the identity map. Now suppose $U \subset \Omega$ is a nonempty clopen set. Then there exists $n_0 \geq 1$ such that for any $n \geq n_0$ the set U can be represented as a union $U = C_1 \cup C_2 \cup \cdots \cup C_s$, where each C_i is of the form [u.w] for some words u, w of length 2^{n-1} . We can assume that the cylinders C_1, C_2, \ldots, C_s are nonempty and distinct. Then $U = C_1 \sqcup C_2 \sqcup \cdots \sqcup C_s$. If δ_U is well defined, then $\delta_U = \delta_{C_1} \delta_{C_2} \ldots \delta_{C_s}$ due to Lemma 3.2. Since each C_i is a nonempty cylinder of dimension 2^n , Lemma 2.10 implies that $C_i = T^N([.w_n l])$ for some $l \in \{b, c, d\}$ and $N \in \mathbb{Z}$. Then $\delta_{C_i} = T^N \delta_{[.w_n l]} T^{-N}$ due to Lemma 3.1. In particular, each δ_{C_i} belongs to the group G_n . It follows that $\delta_U \in G_n$ as well. For any $n \geq 3$ let H_n be the subgroup of [[T]] generated by $\tau_{[.w_nb]}$, $\tau_{[.w_nc]}$, $\tau_{[.w_nd]}$, and T. The restriction $n \geq 3$ is necessary since $\tau_{[.ac]}$ and $\tau_{[.acac]}$ are not defined. If $n \geq 3$ then the cylinders $[.w_nb]$, $[.w_nc]$, and $[.w_nd]$ are contained in [.acab]. Since sets [.acab], T([.acab]) = [a.cab], and $T^2([.acab]) = [ac.ab]$ are disjoint from one another, the transformation $\tau_{[.acab]}$ is well defined and so are the generators of the group H_n .

Lemma 4.3 $\delta_{[w_{n+1}l_n]} \in H_{n+2}$ for all $n \geq 1$.

Proof. By Lemma 2.13, $[.w_{n+1}l_n] = T^{N_n}(U_n) \sqcup T^{M_n}(U_n)$, where $U_n = [.w_{n+2}l_n]$, $N_n = 2^{n+1}$, and $M_n = 3 \cdot 2^n$. Note that $M_n - N_n \ge 2$. It follows from Lemmas 3.1 and 3.2 that $\delta_{[.w_{n+1}l_n]} = \Psi_{U_n,N_n,N_n+1}\Psi_{U_n,M_n,M_n+1}$. Since $\Psi_{U_n,N,N+1}$ is an involution for all $N \in \mathbb{Z}$, we obtain

$$\delta_{[.w_{n+1}l_n]} = \Psi_{U_n,N_n,N_n+1} \Psi_{U_n,N_n+1,N_n+2}^2 \Psi_{U_n,N_n+2,N_n+3}^2 \dots \Psi_{U_n,M_n-1,M_n}^2 \Psi_{U_n,M_n,M_n+1}$$

$$= (\Psi_{U_n,N_n,N_n+1}\Psi_{U_n,N_n+1,N_n+2})(\Psi_{U_n,N_n+1,N_n+2}\Psi_{U_n,N_n+2,N_n+3})\dots(\Psi_{U_n,M_n-1,M_n}\Psi_{U_n,M_n,M_n+1}).$$

Since τ_{U_n} is well defined, it follows from Lemma 3.1 that $\Psi_{U_n,N,N+2}$ is well defined for any $N \in \mathbb{Z}$. By Lemma 3.3, $\Psi_{U_n,N,N+2} = \Psi_{U_n,N,N+1} \Psi_{U_n,N+1,N+2}$ for all $N \in \mathbb{Z}$. Therefore

$$\delta_{[w_{n+1}l_n]} = \Psi_{U_n, N_n, N_n+2} \Psi_{U_n, N_n+1, N_n+3} \dots \Psi_{U_n, M_n-2, M_n}$$

By Lemma 3.1, $\Psi_{U_n,N,N+2} = T^N \tau_{U_n} T^{-N}$ for all $N \in \mathbb{Z}$. It follows by induction that

$$\Psi_{U_n,N,N+2}\Psi_{U_n,N+1,N+3}\dots\Psi_{U_n,N+K-1,N+K+1} = T^N (\tau_{U_n} T)^K T^{-N-K}$$

for all $N \in \mathbb{Z}$ and $K \geq 1$. In the case $N = N_n$, $K = M_n - N_n - 1$, we obtain that

$$\delta_{[.w_{n+1}l_n]} = T^{2^{n+1}} (\tau_{[.w_{n+2}l_n]}T)^{2^n-1} T^{1-3\cdot 2^n},$$

which belongs to the group H_{n+2} .

Lemma 4.4 $H_n = H_4$ for all n > 4.

Proof. Let us fix an arbitrary $n \ge 4$. First we are going to show that $\tau_{[.w_{n+1}l]} \in H_n$ for each $l \in \{b, c, d\}$ (so that $H_{n+1} \subset H_n$). Let $U = [w_n l_n.]$ and $V_l = [.w_n l]$. By Lemma 2.1, w_n has length $2^n - 1$ and $w_{n+1} = w_n l_n w_n$. It follows that $U = T^{2^n}([.w_n l_n])$ and $U \cap V_l = [w_n l_n.w_n l] = T^{2^n}([.w_{n+1}l])$. By Lemma 2.11, the cylinder $[.w_n l_n]$ is the union of $[.w_{n+1}b]$, $[.w_{n+1}c]$, and $[.w_{n+1}d]$. Therefore U is the union of $T^{2^n}([.w_{n+1}b]) = [w_n l_n.w_n b], T^{2^n}([.w_{n+1}c]) = [w_n l_n.w_n c]$, and $T^{2^n}([.w_{n+1}d]) = [w_n l_n.w_n d]$. As a consequence, the cylinder U is contained in $[.w_n]$. Clearly, $V_l \subset [.w_n]$ as well.

By Lemma 2.8, the cylinder $[.w_n]$ is disjoint from $T^N([.w_n])$ for $1 \leq N < 2^{n-1}$. In particular, it is disjoint from $T([.w_n])$, $T^2([.w_n])$, $T^3([.w_n])$, and $T^4([.w_n])$. Since U and V_l are subsets of $[.w_n]$, the cylinder U is disjoint from $T(V_l)$, $T^2(V_l)$, $T^3(V_l)$, and $T^4(V_l)$. Then it follows from Lemma 3.4 that

$$\Psi_{V_l,0,2}\Psi_{U,-2,0}^{-1}\Psi_{V_l,0,2}^{-1}\Psi_{U,-2,0}=\Psi_{U\cap V_l,-1,1}.$$

l

By Lemma 3.1, $\Psi_{U \cap V_{l,-1,1}} = T^{2^{n-1}} \tau_{[.w_{n+1}l]} T^{1-2^{n}}$ and $\Psi_{U,-2,0} = T^{2^{n-2}} \tau_{[.w_{n}l_{n}]} T^{2-2^{n}}$. Besides, $\Psi_{V_{l},0,2} = \tau_{[.w_{n}l]}$. Hence

$$\begin{aligned} \tau_{[.w_{n+1}l]} &= T^{1-2^{n}} \Psi_{U \cap V_{l},-1,1} T^{2^{n}-1} = T^{1-2^{n}} \Psi_{V_{l},0,2} \Psi_{U,-2,0}^{-1} \Psi_{V_{l},0,2}^{-1} \Psi_{U,-2,0} T^{2^{n}-1} \\ &= T^{1-2^{n}} \tau_{[.w_{n}l]} (T^{2^{n}-2} \tau_{[.w_{n}l_{n}]} T^{2-2^{n}})^{-1} \tau_{[.w_{n}l]}^{-1} (T^{2^{n}-2} \tau_{[.w_{n}l_{n}]} T^{2-2^{n}}) T^{2^{n}-1} \\ &= T^{1-2^{n}} \tau_{[.w_{n}l]} T^{2^{n}-2} \tau_{[.w_{n}l_{n}]}^{-1} T^{2-2^{n}} \tau_{[.w_{n}l_{n}]}^{-1} T^{2^{n}-2} \tau_{[.w_{n}l_{n}]} T, \end{aligned}$$

which is in the group H_n .

Next we are going to show that $\tau_{[.w_{n-1}l]} \in H_n$ for each $l \in \{b, c, d\}$ (so that $H_{n-1} \subset H_n$). Note that exactly one of the letters l_{n-2} , l_{n-1} , and l_n coincides with l. In view of Lemmas 2.11, 2.12, and 2.13, the cylinder $[.w_{n-1}l]$ is a disjoint union of one (if $l = l_n$), two (if $l = l_{n-2}$), or three (if $l = l_{n-1}$) sets of the form $T^N([.w_nl'])$, where $l' \in \{b, c, d\}$ and $N \in \mathbb{Z}$. By Lemma 3.1, $\tau_{T^N([.w_nl'])} = T^N \tau_{[.w_nl']} T^{-N}$, which belongs to H_n . Then it follows from Lemma 3.2 that $\tau_{[.w_{n-1}l]}$ is a product of at most three elements of the group H_n . Hence $\tau_{[.w_{n-1}l]} \in H_n$ as well.

We have shown that $H_{n+1} \subset H_n$ and $H_{n-1} \subset H_n$ for all $n \ge 4$. As a consequence, $H_{n+1} = H_n$ for $n \ge 4$. It follows by induction that $H_n = H_4$ for $n \ge 4$.

Lemma 4.5 $G_n = G_3$ for all n > 3.

Proof. First we are going to show that $\tau_{[.w_4l]} \in G_3$ for each $l \in \{b, c, d\}$ (so that the group H_4 is a subgroup of G_3). Let U = [acabacad.] and $V_l = [.acabacal]$. Since $w_3 = acabaca$ and $l_3 = d$, we have $U = T^8([.w_3l_3])$, $V_l = [.w_3l]$, and $U \cap V_l = [w_3l_3.w_3l] = T^8([.w_3l_3w_3l]) = T^8([.w_4l])$. By Lemma 2.5, any occurrence of w_3l_3 in ξ is immediately followed by w_3b , w_3c , or w_3d . As a consequence, $U = [w_3l_3.]$ is contained in $[.w_3]$. Clearly, $V_l \subset [.w_3]$ as well. Observe that the cylinder $[.w_3] = [.acabaca]$ is disjoint from $T([.w_3]) = [a.cabaca]$ and $T^2([.w_3]) = [ac.abaca]$. Since U and V_l are subsets of $[.w_3]$, the cylinder U is disjoint from $T(V_l)$ and $T^2(V_l)$. Then it follows from Lemma 3.4 that

$$\Psi_{V_l,0,1}\Psi_{U,-1,0}^{-1}\Psi_{V_l,0,1}^{-1}\Psi_{U,-1,0} = \Psi_{U\cap V_l,-1,1}$$

By Lemma 3.1, $\Psi_{U \cap V_l, -1, 1} = T^7 \tau_{[.w_4l]} T^{-7}$ and $\Psi_{U, -1, 0} = T^7 \delta_{[.w_3l_3]} T^{-7}$. Besides, $\Psi_{V_l, 0, 1} = \delta_{[.w_3l]}$. Hence

$$\begin{aligned} \tau_{[.w_4l]} &= T^{-7} \Psi_{U \cap V_l, -1, 1} T^7 = T^{-7} \Psi_{V_l, 0, 1} \Psi_{U, -1, 0}^{-1} \Psi_{V_l, 0, 1}^{-1} \Psi_{U_l, -1, 0} T^7 \\ &= T^{-7} \delta_{[.w_3l]} (T^7 \delta_{[.w_3l_3]} T^{-7})^{-1} \delta_{[.w_3l]}^{-1} (T^7 \delta_{[.w_3l_3]} T^{-7}) T^7 \\ &= T^{-7} \delta_{[.w_3l]} T^7 \delta_{[.w_3l_3]} T^{-7} \delta_{[.w_3l_3]} T^{7} \delta_{[.w_3l_3]}, \end{aligned}$$

which is in the group G_3 .

Next we derive three formulas. By Lemma 2.11, $[.w_n l_n] = [.w_{n+1}b] \sqcup [.w_{n+1}c] \sqcup [.w_{n+1}d]$ for all $n \geq 1$. Then Lemma 3.2 implies that $\delta_{[.w_n l_n]} = \delta_{[.w_{n+1}b]}\delta_{[.w_{n+1}c]}\delta_{[.w_{n+1}d]}$ for $n \geq 1$. By Lemma 2.12, $[.w_n l_{n+1}] = T^{2^n}([.w_{n+1}l_{n+1}])$ for all $n \geq 1$. Then Lemma 3.1 implies that $\delta_{[.w_n l_{n+1}]} = T^{2^n}\delta_{[.w_{n+1}l_{n+1}]}T^{-2^n}$ for $n \geq 1$. By Lemma 2.13, $[.w_n l_{n-1}] = T^{2^n}([.w_{n+1}l_{n-1}]) \sqcup T^{3\cdot 2^{n-1}}([.w_{n+1}l_{n-1}])$ for all $n \geq 2$. Then Lemmas 3.1 and 3.2 imply that

$$\delta_{[.w_n l_{n-1}]} = (T^{2^n} \delta_{[.w_{n+1} l_{n-1}]} T^{-2^n}) (T^{3 \cdot 2^{n-1}} \delta_{[.w_{n+1} l_{n-1}]} T^{-3 \cdot 2^{n-1}})$$

= $T^{2^n} \delta_{[.w_{n+1} l_{n-1}]} T^{2^{n-1}} \delta_{[.w_{n+1} l_{n-1}]} T^{-3 \cdot 2^{n-1}}$

for $n \geq 2$. Note that for any $n \geq 2$ the triple l_{n-1}, l_n, l_{n+1} is a permutation of the triple b, c, d. Therefore the above three formulas imply that transformations $\delta_{[.w_nb]}, \delta_{[.w_nc]}$, and $\delta_{[.w_nd]}$ belong to the group G_{n+1} . Hence $G_n \subset G_{n+1}$ for all $n \geq 2$.

Next we are going to show that $G_{n+1} \subset G_n$ for all $n \geq 3$. By the above, $H_4 \subset G_3$. In view of Lemmas 4.3 and 4.4, the group G_3 contains $\delta_{[.w_{n+1}l_n]}$ for all $n \geq 2$. Since $G_n \subset G_{n+1}$ for $n \geq 2$, it follows by induction that $G_3 \subset G_n$ for all $n \geq 3$. As a consequence, $\delta_{[.w_{n+1}l_n]} \in G_n$ for $n \geq 3$. Besides, for any $n \geq 1$ we have $\delta_{[.w_{n+1}l_{n+1}]} = T^{-2^n} \delta_{[.w_nl_{n+1}]} T^{2^n}$, which belongs to G_n . Therefore for any $n \geq 3$ the group G_n contains two of the three transformations $\delta_{[.w_{n+1}b]}$, $\delta_{[.w_{n+1}c]}$, and $\delta_{[.w_{n+1}d]}$. Since the product of all three is $\delta_{[.w_{n+1}b]} \delta_{[.w_{n+1}c]} \delta_{[.w_{n+1}d]} = \delta_{[.w_nl_n]} \in G_n$, the remaining one of the three is in G_n as well. Hence G_n contains all generators of the group G_{n+1} so that $G_{n+1} \subset G_n$.

We have shown that $G_n \subset G_{n+1}$ for $n \ge 2$ and $G_{n+1} \subset G_n$ for $n \ge 3$. As a consequence, $G_{n+1} = G_n$ for $n \ge 3$. It follows by induction that $G_n = G_3$ for all $n \ge 3$.

Proof of Theorem 1.10. According to Theorem 1.4, the topological full group [[T]] is generated by T and all transformations of the form δ_U , where $U \subset \Omega$ is a clopen set. By Lemma 4.2, each δ_U is contained in the group G_n (generated by $\delta_{[.w_nb]}, \delta_{[.w_nc]}, \delta_{[.w_nd]}$, and T) for n large enough. Then it follows from Lemma 4.5 that each δ_U is contained in the group G_3 . We conclude that $G_3 = [[T]]$. By Lemma 4.1, the group G_3 coincides with the group generated by $T, \delta_{[.b]}, \delta_{[.d]}$, and $\delta_{[.accacc]}$.

References

- [GPS] T. Giordano, I. F. Putnam, and C. F. Skau, Full groups of Cantor minimal systems. Israel J. Math. 111 (1999), no. 1, 285–320.
- [Lys] I. G. Lysenok, A system of defining relations for a Grigorchuk group. Math. Notes 38 (1985), 784–792 [translated from Mat. Zametki 38 (1985), no. 4, 503–516].
- [M-B] N. Matte Bon, Topological full groups of minimal subshifts with subgroups of intermediate growth. J. Modern Dynamics 9 (2015), 67–80.
- [Mat] H. Matui, Some remarks on topological full groups of Cantor minimal systems. Internat. J. Math. 17 (2006), no. 2, 231–251.
- [Vor] Ya. Vorobets, On a substitution subshift related to the Grigorchuk group. *Proc.* Steklov Inst. Math. **271** (2010), 306–321.

DEPARTMENT OF MATHEMATICS TEXAS A&M UNIVERSITY COLLEGE STATION, TX 77843–3368