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1 Introduction

Let τ be a substitution over the alphabet {a, b, c, d} defined by relations

τ(a) = aca, τ(b) = d, τ(c) = b, τ(d) = c.

The substitution acts on words (finite sequences) over this alphabet as well as on
infinite sequences. It is easy to observe that τ has a unique invariant sequence ω
that is the limit of words τ k(a), k = 1, 2, . . . . Let Ω be the smallest closed set of
one-sided infinite sequences over the alphabet {a, b, c, d} that contains ω and is
invariant under the shift σ (σ acts on sequences by deleting the first element). The
set Ω consists of those sequences for which any finite subword appears somewhere
in ω. The restriction of σ to Ω is called a subshift. Since ω is a fixed point of a
substitution, this particular subshift is called a substitution subshift.

The substitution τ plays an important role in the study of the Grigorhuk group
(see the survey [3]). The Grigorchuk group G is a finitely generated infinite group
where all elements are of finite order. It has many other remarkable properties as
well. The group has four generators a, b, c, d. An important fact is that the substi-
tution τ gives rise to a homomorphism of G to itself. It follows that τ transforms
any relator for G into another relator. Although G has no finite presentation, it
admits a recursive presentation (due to Lysenok [4]) obtained from a finite set of
relators by repeatedly applying τ :

G = 〈a, b, c, d | 1 = a2 = b2 = c2 = d2 = bcd = τn((ad)4) = τn((adacac)4), n ≥ 0〉.

The structure of the Grigorchuk group is not completely understood yet. In view
of the above presentation, it is believed that properties of the sequence ω and
the subshift σ|Ω might give an insight on that matter. In this paper we study
dynamics of σ|Ω.
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Theorem 1.1 The subshift σ|Ω is, up to a countable set, continuously conjugated
to the binary odometer.

Theorem 1.1 suggests that ergodic properties of the subshift σ|Ω are the same
as ergodic properties of the binary odometer. The following theorem is a detailed
version of this suggestion.

Theorem 1.2 (i) The subshift σ|Ω has a unique invariant Borel probability mea-
sure µ.

(ii) σ|Ω is ergodic with respect to the measure µ. Moreover, every orbit of σ|Ω
is uniformly distributed in Ω with respect to µ.

(iii) σ|Ω has purely point spectrum, the eigenvalues being all roots of unity of
order 1, 2, . . . , 2k, . . . . Each eigenvalue is simple.

(iv) All eigenfunctions of σ|Ω are continuous.

It turns out that ω is a one-sided analog of what is called Toeplitz sequences
(see, e.g., [2]). The Toeplitz sequences can be informally described as almost
periodic. Subshifts generated by Toeplitz sequences are known to be continuous
extensions of odometers. A nontrivial feature of ω is that the extension is one-
to-one up to a countable set. In Section 4 we place ω into a class of Toeplitz
sequences that are as close to periodic as possible. Theorems 1.1 and 1.2 hold for
all sequences in that class.

The substitution subshifts can be studied by means of Bratteli diagrams (see,
e.g., [1]). This approach works very well for so-called primitive substitutions.
However the substitution τ is not primitive.

The paper is organized as follows. Section 2 is a survey on odometers. We
discuss their dynamics and determine when a particular odometer is a continu-
ous factor of a particular topological dynamical system. In Section 3 we collect
necessary information about Toeplitz sequences and the associated subshifts. In
Section 4, these results are applied to the class of Toeplitz sequences that contains
ω. The paper ends with the proof of Theorems 1.1 and 1.2. It should be noted
that a number of results in Sections 2 and 3 are well known to specialists (al-
though it might not be easy to locate them in the literature; in particular, results
on Toelitz sequences are usually formulated for bi-infinite sequences). For reader’s
convenience, we include all proofs so that the paper is self-contained.

2 Odometers

In this section we consider general transformations T : X → X such that X is a
compact topological space and T is a continuous map (not necessarily one-to-one
or onto). For any x ∈ X the sequence x, Tx, T 2x, . . . is called the orbit of the
point x under the transformation T . By Z(x, T ) we denote the closure of the
orbit. Note that Z(x, T ) is the smallest closed subset of X that contains x and
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is invariant under T . If C is a compact subset of X invariant under T , then T |C
denotes the restriction of T to C. The transformation T is called transitive if
there exists a dense orbit, that is, if Z(x, T ) = X for some x ∈ X. T is called
minimal if each orbit is dense.

Let T1 : X1 → X1 and T2 : X2 → X2 be continuous transformations of compact
sets. Suppose there exists a continuous map f : X1 → X2 such that f is onto and
fT1 = T2f so that the following diagram is commutative:

X1
T1−→ X1

f




y





y
f

X2
T2−→ X2

Then T2 is called a (continuous) factor of T1 while T1 is called a (continuous)
extension of T2. If, in addition, we can choose f to be a homeomorphism then T1

and T2 are called (continuously) conjugated and f is called a conjugacy.
A transformation T : X → X is called a cyclic permutation if X is a finite set

with the discrete topology, T is one-to-one, and an orbit of T contains all elements
of X. Let n denote the cardinality of X. Then for any x ∈ X the sequence
x, Tx, T 2x, . . . , T n−1x is a complete list of elements of X. Besides, T nx = x so
that T has order n. Any cyclic permutation is determined by its order up to
conjugacy.

It is easy to observe that a cyclic permutation T1 is a factor of another cyclic
permutation T2 if and only if the order of T1 divides the order of T2. In general,
a cyclic permutation of order n is a factor of a transformation T : X → X if
and only if the set X can be split into n disjoint closed subsets X1, X2, . . . , Xn

which are cyclically permuted by T , that is, T (Xi) ⊂ Xi+1 for 1 ≤ i ≤ n − 1 and
T (Xn) ⊂ X1. Note that the sets X1, X2, . . . , Xn are both closed and open.

Now assume that a transformation T : X → X is a continuous extension of
two cyclic permutations T1 and T2 such that T1 is a factor of T2. Then there
exist continuous onto maps f : X2 → X1, f1 : X → X1, and f2 : X → X2 such
that fT2 = T1f , f1T = T1f1, and f2T = T2f2, i.e., the following diagrams are
commutative:

X
T

−→ X

f2





y





y
f2

X2
T2−→ X2

f




y





y
f

X1
T1−→ X1

X
T

−→ X

f1





y





y
f1

X1
T1−→ X1

Note that, given f and f2, we can always take f1 = ff2. It turns out that the
latter identity can also be satisfied when one is given f and f1 and has to choose
f2.
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Lemma 2.1 For any choice of the maps f and f1 above, we can choose the map
f2 so that ff2 = f1.

Proof. Take an arbitrary continuous map h : X → X2 such that hT = T2h.
For any x ∈ X1 and y ∈ X2 let U(x) = f−1

1 (x), V (x) = h−1(y), and W (x, y) =
U(x) ∩ V (y). Then U(x), x ∈ X1 is a collection of disjoint closed sets that
partition X. The same holds true for the collections V (y), y ∈ X2 and W (x, y),
(x, y) ∈ X1 × X2. Furthermore, T (U(x)) ⊂ U(T1x), T (V (y)) ⊂ V (T2y), and
T (W (x, y)) ⊂ W (T1x, T2y).

By n denote the cardinality of the set X1. For any y ∈ X2 let Y (y) =
⋃n−1

k=0 W (f(y), T k
2 y). Clearly, each Y (y) is a closed subset of U(f(y)). Besides,

T (Y (y)) ⊂ Y (T2y) since T1f(y) = f(T2y). For any x0 ∈ X1 and y0 ∈ X2 there is
a unique k ∈ {0, 1, . . . , n − 1} such that f(T−k

2 y0) = x0. It follows that the sets
Y (y), y ∈ X2 are disjoint and cover the entire set X.

Define a map f2 : X → X2 so that f2(z) = y for all y ∈ X2 and z ∈ Y (y).
Since Y (y), y ∈ X2 is a collection of disjoint closed sets that partition X, the map
f2 is well defined and continuous. Since Y (y) ⊂ U(f(y)) and T (Y (y)) ⊂ Y (T2y)
for any y ∈ X2, it follows that ff2 = f1 and f2T = T2f2. Clearly, f2 is onto.

For any integer n > 0 we denote Zn = Z/nZ. Given k ∈ Zn and m ∈ Z,
the sum k + m is a well defined element of Zn. The odometer on Zn is the
transformation x 7→ x + 1. Now let n1, n2, . . . be a finite or infinite sequence of
positive integers. The odometer on Zn1 ×Zn2 × . . . is a transformation T defined
as follows. For any mi ∈ Zni

, i = 1, 2, . . . , we let T (m1,m2, . . . ) = (k1, k2, . . . ),
where ki = mi + 1 if mj = −1 + njZ for 1 ≤ j < i, and ki = mi otherwise. We
regard each Zn as a discrete topological space and endow Zn1 × Zn2 × . . . with
the product topology. Then the odometer is a homeomorphism of a compact set.
It is easy to see that any odometer is minimal. The odometer on a finite set is a
cyclic permutation.

Lemma 2.2 For any odometer T0 there exist a compact Abelian group G and
g0 ∈ G such that T0 is continuously conjugated to the transformation g 7→ g + g0

of G.

Proof. Suppose T0 is the odometer on X = Zn1 × Zn2 × . . . . If X is fi-
nite then T0 is a cyclic permutation, hence it is conjugated to the odometer on
some Zn. Now assume X is infinite. Let us regard Z as a discrete topologi-
cal group and endow the countable product G = Z × Z × . . . with the prod-
uct topology. By G0 denote the closed subgroup of G generated by elements
(n1,−1, 0, 0, 0, . . . ), (0, n2,−1, 0, 0, . . . ), (0, 0, n3,−1, 0, . . . ), . . . . Let g0 ∈ G/G0

be the coset containing (1, 0, 0, . . . ). Each g ∈ G/G0 intersects the compact set
Y = {0, 1, . . . , n1 − 1} × {0, 1, . . . , n2 − 1} × . . . in exactly one element. For any
y = (y1, y2, . . . ) ∈ Y let f1(y) = (y1+n1Z, y2+n2Z, . . . ) ∈ X and let f2(y) ∈ G/G0

be the coset containing y. It is easy to observe that the maps f1 : Y → X and
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f2 : Y → G/G0 are homeomorphisms. Besides, f2f
−1
1 (T0x) = f2f

−1
1 (x) + g0 for

all x ∈ X.

Lemma 2.3 Assume that a transformation T : X → X is a continuous extension
of an odometer T0 : X0 → X0. Then for any x ∈ X and x0 ∈ X0 there exists a
continuous map f : X → X0 such that f is onto, fT = T0f , and f(x) = x0. The
map f is unique provided that T is transitive.

Proof. It is no loss of generality to replace T0 by a continuously conjugated
transformation. In view of Lemma 2.2, we can assume that X0 is a compact
Abelian group and T0x0 = x0 + g0 for some g0 ∈ X0 and all x0 ∈ X0. Let
f : X → X0 be a continuous onto map such that fT = T0f . For any g ∈ X0

and x ∈ X let fg(x) = f(x) + g. Then fg is a continuous map of X onto X0

and fgT (x) = fT (x) + g = T0f(x) + g = f(x) + g0 + g = T0fg(x) for all x ∈ X.
Obviously, for any x ∈ X and x0 ∈ X0 there exists a unique g ∈ X0 such that
fg(x) = x0.

Now assume T is transitive and pick y ∈ X such that the orbit of y under the
transformation T is dense in X. Suppose h : X → X0 is a continuous map such
that hT = T0h. We have h(y) = fg(y) for some g ∈ X0. Since hT = T0h and
fgT = T0fg, it follows that h(T iy) = fg(T

iy) for i = 1, 2, . . . . Then density of the
sequence y, Ty, T 2y, . . . in X implies that h = fg.

Lemma 2.4 Two odometers are continuously conjugated if either of them is a
continuous factor of the other.

Proof. Let T1 : X1 → X1 and T2 : X2 → X2 be odometers such that T1 is
both a continuous factor and a continuous extension of T2. Pick x1 ∈ X1 and
x2 ∈ X2. By Lemma 2.3, there are unique continuous onto maps f1 : X1 →
X2 and f2 : X2 → X1 such that f1T1 = T2f1, f2T2 = T1f2, f1(x1) = x2, and
f2(x2) = x1. Note that f1f2f1 and f2f1f2 are continuous maps, f1f2f1(X1) = X2,
and f2f1f2(X2) = X1. Further, (f1f2f1)T1 = f1f2T2f1 = f1T1f2f1 = T2(f1f2f1)
and f1f2f1(x1) = x2. Similarly, (f2f1f2)T2 = T1(f2f1f2) and f2f1f2(x2) = x1. It
follows that f1f2f1 = f1 and f2f1f2 = f2. Since the maps f1 and f2 are onto, f1f2

and f2f1 are the identity maps of X2 and X1, respectively. Thus f1 and f2 are
homeomorphisms.

The following two lemmas explore relations between odometers and cyclic per-
mutations.

Lemma 2.5 Assume that a transformation T is a continuous extension of cyclic
permutations of orders n1, n1n2, n1n2n3, . . . , where n1, n2, n3, . . . is a sequence of
positive integers. Then T is also a continuous extension of the odometer on Zn1 ×
Zn2 × Zn3 × . . . .
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Proof. We assume that the sequence n1, n2, n3, . . . is infinite as otherwise the
lemma is trivial. For any k ≥ 1 let Xk = Zn1×Zn2×· · ·×Znk

and denote by Tk the
odometer on Xk. Also, let T∞ denote the odometer on X∞ = Zn1×Zn2×Zn3× . . .
and let X denote the space on which T acts. For any k ≥ 1 consider the natural
projections πk : Xk+1 → Xk and pk : X∞ → Xk. They are continuous and onto.
Besides, πkTk+1 = Tkπk and pkT∞ = Tkpk. Since the odometer Tk is a cyclic
permutation of order n1n2 · · ·nk, it is a factor of the transformation T . Hence
there is a continuous map fk : X → Xk such that fkT = Tkfk. In view of Lemma
2.1, we can choose the maps f1, f2, . . . so that fk = πkfk+1 for all k ≥ 1.

Define a map f : X → X∞ as follows. Given x ∈ X, let f(x) = (m1,m2, . . . ),
where fk(x) = (m1,m2, . . . ,mk) for all k ≥ 1. The map f is well defined since
fk = πkfk+1 for all k ≥ 1. Its continuity follows from the continuity of f1, f2, . . . .
Furthermore, fT = T∞f as fkT = Tkfk and pkT∞ = Tkpk for all k ≥ 1. In
particular, the image f(X) is invariant under T∞. Since X is compact, f(X) a
nonempty compact subset of X∞. The minimality of the odometer T∞ implies
that the map f is onto. Thus T∞ is a continuous factor of T .

Lemma 2.6 A cyclic permutation of order n is a continuous factor of the odome-
ter on Zm1 × Zm2 × Zm3 × . . . if and only if n divides some of the numbers
m1,m1m2,m1m2m3, . . . .

Proof. Let T be the odometer on X = Zm1 × Zm2 × . . . . First suppose the
sequence m1,m2, . . . is finite. Denote by k its length. Then T is a cyclic permu-
tation of order m1m2 · · ·mk. Hence a cyclic permutation of order n is a factor of
T if and only if n divides m1m2 · · ·mk.

Now consider the case when the sequence m1,m2, . . . is infinite. Suppose that
a cyclic permutation T0 : X0 → X0 of order n is a factor of T . Let f : X → X0 be
a continuous map such that fT = T0f . It is easy to observe that for any x ∈ X
the sequence Tm1x, Tm1m2x, Tm1m2m3x, . . . converges to x. Hence the sequence
f(Tm1x), f(Tm1m2x), f(Tm1m2m3x), . . . converges to f(x). Since X0 is a finite
set with the discrete topology, this means that f(Tm1m2···mkx) = Tm1m2···mk

0 f(x)
coincides with f(x) for large k. It follows that n divides m1m2 · · ·mk for large k.

Conversely, if n divides some m1m2 · · ·mk then any cyclic permutation T0 of
order n is a factor of the odometer Tk on Xk = Zm1 ×Zm2 × · · · ×Zmk

. But Tk is
a factor of T since the natural projection pk : X → Xk is continuous and satisfies
pkT = Tkpk. Then T0 is also a factor of the odometer T .

Lemma 2.7 The odometer on Zn1 ×Zn2 ×Zn3 × . . . is a continuous factor of the
odometer on Zm1 × Zm2 × Zm3 × . . . if and only if each element of the sequence
n1, n1n2, n1n2n3, . . . divides an element of the sequence m1,m1m2,m1m2m3, . . . .

Proof. Let T1 denote the odometer on Zn1 ×Zn2 ×Zn3 × . . . and T2 denote the
odometer on Zm1 ×Zm2 ×Zm3 × . . . . By Lemma 2.6, cyclic permutations of orders
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n1, n1n2, n1n2n3, . . . are factors of T1. Assume that T1 is a factor of T2. Then all
factors of T1 are also factors of T2. It follows from Lemma 2.6 that each of the num-
bers n1, n1n2, n1n2n3, . . . divides some of the numbers m1,m1m2,m1m2m3, . . . .

Conversely, assume that each of the numbers n1, n1n2, n1n2n3, . . . divides some
of the numbers m1,m1m2,m1m2m3, . . . . Then Lemma 2.6 implies that cyclic
permutations of orders n1, n1n2, n1n2n3, . . . are factors of the odometer T2. By
Lemma 2.5, the odometer T1 is a factor of T2 as well.

To any continuous transformation T of a compact topological space we asso-
ciate the set CF(T ) of positive integers n such that T is a continuous extension
of the cyclic permutation of order n (CF stands for “cyclic factors”).

Lemma 2.8 The set CF(T ) has the following properties:
(i) 1 ∈ CF(T );
(ii) if n ∈ CF(T ) and d > 0 is a divisor of n, then d ∈ CF(T );
(iii) if n1, n2, . . . , nk ∈ CF(T ), then lcm(n1, n2, . . . , nk) ∈ CF(T ).

Proof. Property (i) is trivial.
Suppose d and n are positive integers. If d divides n then a cyclic permutation

of order d is a factor of a cyclic permutation of order n. Therefore all continuous
extensions of the latter permutation are also continuous extensions of the former
one. In particular, d ∈ CF(T ) whenever n ∈ CF(T ). Property (ii) is verified.

Let X denote the topological space on which T acts. Given m,n ∈ CF(T ),
there exist continuous maps f1 : X → Zm and f2 : X → Zn such that f1(Tx) =
f1(x) + 1 and f2(Tx) = f2(x) + 1 for all x ∈ X. Then f = (f1, f2) is a continuous
map of X to Zm × Zn. Furthermore, fT = T0f , where T0 denotes the transfor-
mation (x, y) 7→ (x + 1, y + 1) of Zm × Zn. Assume that m and n are coprime.
Then T0 is a cyclic permutation of order mn and the map f is onto. Consequently,
mn ∈ CF(T ).

Let n1, n2 ∈ CF(T ). It is easy to show that there exist positive coprime integers
d1, d2 such that d1 divides n1, d2 divides n2, and d1d2 = lcm(n1, n2). By the above
d1, d2, d1d2 ∈ CF(T ). Now property (iii) follows by induction.

The continuous cyclic factors of a transformation T : X → X are related to
continuous eigenfunctions of T . Let UT denote a linear operator that acts on
functions on X by precomposing them with T : UT φ = φT . A nonzero function
φ : X → C is an eigenfunction of T associated with an eigenvalue λ if UT φ = λφ,
that is, if φ(Tx) = λφ(x) for all x ∈ X.

Lemma 2.9 If n ∈ CF(T ), then the transformation T admits a continuous eigen-
function associated with the eigenvalue e2πi/n, a primitive nth root of unity. For
a transitive T , the converse is true as well. Besides, for a transitive T any con-
tinuous eigenfuction is determined by its eigenvalue uniquely up to scaling.
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Proof. Given a positive integer n, let Rn denote the set of all nth roots of unity
in C. Rn is a multiplicative cyclic group of order n generated by a primitive root
ζn = e2πi/n. A transformation Tn : Rn → Rn defined by Tn(z) = ζnz is a cyclic
permutation of order n. If n ∈ CF(T ) for some transformation T : X → X,
then there exists a continuous mapping f : X → Rn such that fT = Tnf , i.e.,
f(Tx) = Tn(f(x)) = ζnf(x) for all x ∈ X. Clearly, f is a continuous eigenfunction
of T associated with the eigenvalue ζn.

Now assume that T : X → X is transitive and pick a point x0 ∈ X with dense
orbit. Let φ be a continuous eigenfunction of T associated with an eigenvalue λ.
The function φ is uniquely determined by its values on the orbit x0, Tx0, T

2x0, . . . .
Since φ(T kx0) = λkφ(x0) for k = 1, 2, . . . , the function φ is uniquely determined
by φ(x0) and λ. Note that φ(x0) 6= 0 as otherwise φ will be identically zero. Since
nonzero scalar multiples of φ are also eigenfunctions with the same eigenvalue, φ
is determined by the eigenvalue λ up to scaling.

In the case λ = ζn, replace the eigenfunction φ by a scalar multiple so that
φ(x0) = 1. Then φ(T kx0) ∈ Rn for all k ≥ 1, which implies that φ(x) ∈ Rn for
all x ∈ X. Therefore φ maps X onto Rn and φ(Tx) = ζnφ(x) = Tn(φ(x)) for all
x ∈ X. Thus the cyclic permutation Tn is a factor of T , that is, n ∈ CF(T ).

Lemma 2.10 Suppose F0 is a set of positive integers such that (i) 1 ∈ F0, (ii)
any positive divisor of an element of F0 also belongs to F0, and (iii) the least
common multiple of finitely many elements of F0 is in F0 as well. Then there
exists an odometer T0 such that CF(T0) = F0.

Proof. First suppose that the set F0 is finite. Let N be its maximal element.
For any m ∈ F0 the least common multiple of m and N belongs to F0. By the
choice of N , we have lcm(m,N) = N , that is, m divides N . On the other hand,
F0 contains all positive divisors of N . Therefore F0 is the set of positive integers
that divide N . It follows that F0 = CF(T0) for any cyclic permutation T0 of order
N . One example of such a permutation is the odometer on ZN .

Now suppose that the set F0 is infinite and let n1, n2, . . . be a complete list of
its elements. For any k ≥ 1 let mk be the least common multiple of the integers
n1, n2, . . . , nk. Then the numbers m1,m2, . . . belong to F0, each mk divides mk+1,
and any n ∈ F0 divides some mk. On the other hand, all positive divisors of any
mk are in F0. Hence F0 is the set of positive integers that divide some of the
numbers m1,m2, . . . . It follows from Lemma 2.6 that F0 = CF(T0), where T0 is
the odometer on Zm1 × Zm2/m1 × Zm3/m2 × . . . .

Proposition 2.11 Suppose T1 and T2 are odometers. Then
(i) T1 is a continuous factor of T2 if and only if CF(T1) ⊂ CF(T2);
(ii) T1 and T2 are continuously conjugated if and only if CF(T1) = CF(T2).
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Proof. Let T1 be the odometer on Zn1×Zn2×Zn3×. . . and T2 be the odometer on
Zm1×Zm2×Zm3×. . . . Lemma 2.6 implies that CF(T1) is the set of positive integers
that divide some of the numbers n1, n1n2, n1n2n3, . . . . Likewise, CF(T2) is the
set of positive integers that divide some of the numbers m1,m1m2,m1m2m3, . . . .
Therefore CF(T1) ⊂ CF(T2) if and only if each of the numbers n1, n1n2, n1n2n3, . . .
divides some of m1,m1m2,m1m2m3, . . . . According to Lemma 2.7, this is exactly
when T1 is a factor of T2.

By Lemma 2.4, the odometers T1 and T2 are conjugated if either of them is a
factor of the other. Hence the statement (ii) of the proposition follows from the
statement (i).

Suppose that an odometer T0 is a continuous factor of a transformation T . We
shall say that T0 is a maximal odometer factor of T if any odometer is a continuous
factor of T0 whenever it is a continuous factor of T .

Proposition 2.12 (i) An odometer T0 is a continuous factor of a transformation
T if and only if CF(T0) ⊂ CF(T ).

(ii) An odometer T0 is a maximal odometer factor of T if and only if CF(T0) =
CF(T ).

(iii) The maximal odometer factor always exists and is unique up to continuous
conjugacy.

Proof. Let T0 be the odometer on Zn1 × Zn2 × Zn3 × . . . . By Lemma 2.6, the
integers n1, n1n2, n1n2n3, . . . belong to CF(T0). If CF(T0) ⊂ CF(T ), they belong
to CF(T ) as well. Then it follows from Lemma 2.5 that T0 is a factor of T .
Conversely, if T0 is a factor of T then all factors of T0 are also factors of T ; in
particular, CF(T0) ⊂ CF(T ).

Lemmas 2.8 and 2.10 imply that for any transformation T there exists an
odometer T1 such that CF(T1) = CF(T ). By the above T1 is a factor of T .
Suppose T2 is another odometer that is a factor of T . Then CF(T2) ⊂ CF(T ) =
CF(T1). By Proposition 2.11, T2 is a factor of T1. Therefore T1 is a maximal
odometer factor of T . Its uniqueness up to continuous conjugacy follows from
Lemma 2.4. Thus an odometer T0 is a maximal odometer factor of T if and only
if it is conjugated to T1. According to Proposition 2.11, this is exactly when
CF(T0) = CF(T1) = CF(T ).

Now let us consider ergodic properties of odometers. First recall some defi-
nitions. Let X be a measured space and T : X → X be a measurable transfor-
mation. A measure µ on X is invariant under T if µ(T−1(B)) = µ(B) for any
measurable subset B ⊂ X. Let UT be the linear operator acting on functions on
X by precomposition with T : UT φ = φT . If µ is an invariant measure, then UT

is a unitary operator when restricted to the Hilbert space L2(X,µ). The spectral
properties of this unitary operator are referred to as spectral properties of the dy-
namical system (X,µ, T ). For instance, one says that T has pure point spectrum
if L2(X,µ) admits an orthonormal basis consisting of eigenfunctions of UT .
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The transformation T is ergodic with respect to the invariant measure µ if for
any measurable subset B ⊂ X that is backward invariant under T (i.e., T−1(B) ⊂
B) one has µ(B) = 0 or µ(X \ B) = 0. If T is ergodic and the measure µ is
finite, then Birkhoff’s ergodic theorem implies that µ-almost all orbits of T are
uniformly distributed in X relative to this measure.

A homeomorphism T of a compact topological space X is called uniquely
ergodic if there exists a unique Borel probability measure on X invariant under
T . The uniquely ergodic transformation T is ergodic with respect to the unique
invariant measure. Moreover, in this case every orbit of T is uniformly distributed
in X.

Proposition 2.13 Let T0 be an odometer. Then
(i) T0 is uniquely ergodic and has purely point spectrum;
(ii) the eigenvalues of T0 are all nth roots of unity, where n runs through the

set CF(T0);
(iii) all eigenvalues of T0 are simple and all eigenfunctions are continuous.

Proof. Let T0 be the odometer on X = Zn1 × Zn2 × . . . . Denote by µ0 a
Borel probability measure on X that is the direct product of normalized counting
measures on finite sets Zn1 , Zn2 , . . . . For any cylindrical set C of the form {z} ×
Znk+1

× Znk+1
× . . . , where z ∈ Zn1 × · · · × Znk

, we have µ0(C) = (n1n2 · · ·nk)
−1.

For a fixed k, there are n1n2 · · ·nk such sets. They partition the set X and are
cyclically permuted by the odometer T0. This implies that µ0(T

−1
0 (C)) = µ0(C)

for all cylindrical sets C. Also, µ(C) = µ0(C) for any Borel probability measure
on X invariant under T0. Since any Borel measure on X is determined by its
values on cylindrical sets, we obtain that the odometer T0 is uniquely ergodic and
µ0 is the unique invariant measure.

Let E be the set of all nth roots of unity, where n runs through the set CF(T0).
Take any ζ ∈ E. We have ζn = 1 for some n ∈ CF(T0). Then ζ = ζk

n, where
ζn = e2πi/n and k is a positive integer. By Lemma 2.9, the odometer T0 admits
a continuous eigenfunction fn associated with the eigenvalue ζn. It is easy to
observe that fk

n is a continuous eigenfunction of T0 associated with the eigenvalue
ζ. According to Lemma 2.9, any continuous eigenfuction of T0 is determined by
its eigenvalue uniquely up to scaling.

To finish the proof of the proposition, it remains to show that the set F of
continuous eigenfunctions of T0 associated with eigenvalues from the set E is
complete in the Hilbert space L2(X,µ0), i.e., the linear span of F is dense in
L2(X,µ0). Take an arbitrary cylindrical set C = {z} × Znk+1

× Znk+1
× . . . . The

product m = n1n2 · · ·nk belongs to CF(T0) due to Lemma 2.6. Then a primitive
mth root of unity ζm = e2πi/m belongs to E. Let f be a continuous eigenfunction
of T0 associated with the eigenvalue ζm. The minimality of T0 implies that f is
nowhere zero. Replacing f by a scalar multiple, we can assume that f(x0) = 1
for some x0 ∈ C. Then f(T k

0 x0) = ζk
m for k = 1, 2, . . . . Note that T k

0 x0 ∈ C if and
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only if k divides m. Besides, f(T k
0 x0) = 1 if and only if k divides m. It follows

that all values of f are mth roots of unity, moreover, f(x) = 1 if and only if x ∈ C.
Therefore the sum f + f 2 + · · ·+ fm is identically m on the set C and identically
zero elsewhere. Notice that each term in this sum is a continuous eigenfunction
of T0 with eigenvalue an mth root of unity. Thus the characteristic functions of
cylindrical sets are contained in the span of F . These characteristic functions
form a complete set in L2(X,µ) for any finite Borel measure µ on X.

Sometimes the odometers as defined above in this section are called generalized
odometers while the notion “odometer” refers to p-adic odometers, which are
defined as follows. Let p be a prime integer and 0 < ρ < 1. Any nonzero r ∈ Q

is uniquely represented in the form pk m
n
, where k,m, n are integers, n > 0, and p

divides neither m nor n. We let |r|p = ρk. Also, let |0|p = 0. Now | · |p is a norm
on the field Q called the p-adic norm. The p-adic norm induces a distance dp on
Q, dp(r1, r2) = |r1 − r2|p for all r1, r2 ∈ Q. By definition, the field Fp of p-adic
numbers is the completion of the field Q with respect to the p-adic norm. The
ring Zp of p-adic integers is the closure of the ring Z in Fp. The transformation
x 7→ x + 1 of Zp is called the p-adic odometer. The 2-adic odometer is also called
the binary odometer.

Lemma 2.14 The p-adic odometer is continuously conjugated to the odometer
on Zp × Zp × Zp × . . . .

Proof. Let X denote Zp × Zp × . . . and T denote the odometer on X. By
X0 denote the countable product {0, 1, . . . , p − 1} × {0, 1, . . . , p − 1} × . . . . We
endow X0 with the product topology. Then the map f : X0 → X defined by
f(n1, n2, . . . ) = (n1 + pZ, n2 + pZ, . . . ) is a homeomorphism.

An arbitrary p-adic integer is uniquely expanded into a series of the form
∑

∞

k=1 nkp
k−1, where nk ∈ {0, 1, . . . , p − 1} for k = 1, 2, . . . . Moreover, any series

of this form converges in Zp. It follows that the map h : X0 → Zp defined by
h(n1, n2, . . . ) =

∑

∞

k=1 nkp
k−1 is one-to-one and onto. It is easy to see that h is

continuous as well. Since X0 is compact, h is a homeomorphism.
It follows from the definition of the maps f and h that hf−1(Tx) = hf−1(x)+1

for all x ∈ X. Thus T is continuously conjugated to the p-adic odometer.

3 Toeplitz sequences

Let A be a nonempty finite set. We denote by AN the countable product A×A×
A × . . . endowed with the product topology (here N refers to positive integers).
Any ω ∈ AN is represented as an infinite sequence (ω1, ω2, . . . ) of elements of
A. Denote by σ the map on AN that sends any sequence ω to the sequence
obtained by deleting the first element of ω. That is, if ω = (ω1, ω2, . . . ) then
σω = (ω′

1, ω
′

2, . . . ), where ω′

k = ωk+1 for k = 1, 2, . . . . The map σ is called the
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(one-sided) shift. It is a continuous map of the compact topological space AN onto
itself. The restriction of the shift to any closed invariant subset of AN is called
a subshift. In particular, any sequence ω ∈ AN gives rise to the subshift σ|Z(ω,σ),
where Z(ω, σ) is the closure of the orbit ω, σω, σ2ω, . . . .

A sequence ω = (ω1, ω2, . . . ) ∈ AN is called a Toeplitz sequence if for any
positive integer n there exists a positive integer p such that ωn = ωn+kp for k =
1, 2, . . . . If ω is a Toeplitz sequence, then all shifted sequences σω, σ2ω, . . . are
also Toeplitz sequences.

Lemma 3.1 Let ω = (ω1, ω2, . . . ) be a Toeplitz sequence. Suppose n and p are
positive integers such that ωn = ωn+kp for k = 1, 2, . . . . If p < n then ωn−p = ωn.

Proof. Since ω is a Toeplitz sequence, there exists a positive integer q such that
ωn−p = ωn−p+kq for k = 1, 2, . . . . In particular, ωn−p = ωn−p+pq. On the other
hand, ωn−p+pq = ωn+(q−1)p = ωn.

Lemma 3.2 For any Toeplitz sequence ω the subshift σ|Z(ω,σ) is minimal.

Proof. For any integer n ≥ 1 there exists an integer pn ≥ 1 such that ωn = ωn+kpn

for k = 1, 2, . . . . Take an arbitrary integer N ≥ 1 and let p = p1p2 . . . pN . Then
ωn = ωn+kp for 1 ≤ n ≤ N and k ≥ 1. In particular, for any k ≥ 1 the first N
elements of the sequence σkpω are the same as the first N elements of ω.

Given ω′ ∈ Z(ω, σ), there are nonnegative integers n1, n2, . . . such that σnkω →
ω′ as k → ∞. It is no loss to assume that the numbers n1, n2, . . . have the
same remainder r under division by p. Then each σnk+p−rω has the same first
N elements as ω. Since σnk+p−rω → σp−rω′ as k → ∞, the sequence σp−rω′ also
has the same first N elements as ω. Since N can be chosen arbitrarily large,
it follows that ω is in the closure of the orbit ω′, σω′, σ2ω′, . . . . Hence the orbit
ω′, σω′, σ2ω′, . . . is dense in Z(ω, σ).

Lemma 3.3 Suppose ω is a Toeplitz sequence. Then for any integer p > 0
there exists an integer K > 0 with the following property. If for some ω′ =
(ω′

1, ω
′

2, . . . ) ∈ Z(ω, σ) and integer n > 0 we have that ω′

n = ω′

n+kp for 1 ≤ k ≤ K,
then ω′

n = ω′

n+kp for all k ≥ 1.

Proof. For any K ≥ 1 let S(p,K) denote the set of positive integers n such that
ωn 6= ωn+kp for some 1 ≤ k ≤ K. By P (p) denote the set of positive integers n
such that ωn = ωn+kp for all k ≥ 1. Take any q ∈ {1, 2, . . . , p}. If q ∈ P (p) then
the numbers q + p, q + 2p, . . . are in P (p) as well. Now suppose that q /∈ P (p).
Then ωq+kp 6= ωq for some k ≥ 1. Since ω is a Toeplitz sequence, there exist
p1, p2 > 0 such that ωq+mp1 = ωq and ωq+kp+mp2 = ωq+kp for all m ≥ 1. In
particular, ωq+lp1p2p 6= ωq+kp+lp1p2p for l = 0, 1, 2, . . . . It follows that each of the
numbers q, q + p, q + 2p, . . . belongs to the set S(p, k + p1p2).
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Let q ∈ {1, 2, . . . , p}. By the above the numbers q, q + p, q + 2p, . . . either all
belong to P (p), or else they all belong to S(p,K) for some K ≥ 1. Hence there
exists an integer K0 ≥ 1 such that N = P (p) ∪ S(p,K0).

Let ω′ = (ω′

1, ω
′

2, . . . ) ∈ Z(ω, σ). Suppose that for some integer n ≥ 1 we
have that ω′

n = ω′

n+kp for 1 ≤ k ≤ K0. Since ω′ ∈ Z(ω, σ), there are nonnegative
integers n1, n2, . . . such that σnmω → ω′ as m → ∞. If m is large enough, then
the first n + K0p elements of the sequence σnmω are the same as the first n + K0p
elements of ω′. In particular, ωnm+n = ωnm+n+kp for 1 ≤ k ≤ K0. This means
that nm + n /∈ S(p,K0). As N = P (p) ∪ S(p,K0), we obtain that nm + n ∈ P (p),
i.e., ωnm+n = ωnm+n+kp for all k ≥ 1. Since σnmω → ω′ as m → ∞, it follows that
ω′

n = ω′

n+kp for all k ≥ 1.

Lemma 3.4 Suppose ω is a Toeplitz sequence. Then the Toeplitz sequences in
Z(ω, σ) form a residual (dense Gδ) subset.

Proof. Given any positive integers n, p, k, let T (n, p, k) be the set of all sequences
ω′ = (ω′

1, ω
′

2, . . . ) ∈ AN such that ω′

n = ω′

n+ip for i = 1, 2, . . . , k. Clearly, T (n, p, k)
is an open subset of AN. The set T of all Toeplitz sequences in AN can be
represented as

T =
∞
⋂

n=1

∞
⋃

p=1

∞
⋂

k=1

T (n, p, k).

Suppose ω is a Toeplitz sequence. According to Lemma 3.3, for any p ≥ 1
there exists an integer Kp ≥ 1 such that

∞
⋂

k=1

T (n, p, k) ∩ Z(ω, σ) = T (n, p,Kp) ∩ Z(ω, σ)

for all n ≥ 1. Then

T ∩ Z(ω, σ) =
∞
⋂

n=1

( ∞
⋃

p=1

T (n, p,Kp)

)

∩ Z(ω, σ).

Since
⋃

∞

p=1 T (n, p,Kp) is an open subset of AN, it follows that T ∩ Z(ω, σ) is

a Gδ subset of Z(ω, σ). It is dense in Z(ω, σ) since ω, σω, σ2ω, . . . are Toeplitz
sequences.

Let ω = (ω1, ω2, . . . ) be a Toeplitz sequence. We shall say that a positive
integer p is a partial period of ω if there is n ≥ 1 such that ωn = ωn+kp for
k = 1, 2, . . . . The integer p is called an essential partial period of ω if there exists
m ≥ 1 such that ωm = ωm+kp for k = 1, 2, . . . while for any 1 ≤ p′ < p the
sequence ωm, ωm+p′ , ωm+2p′ , . . . contains an element different from ωm. We denote
by EP(ω) the set of all essential partial periods of ω (EP stands for “essential
periods”).
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Recall from Section 2 that to each continuous self-mapping T of a compact
topological space we associate the set CF(T ) of positive integers n such that the
cyclic permutation of order n is a factor of T . It turns out that essential partial
periods of a Toeplitz sequence ω completely determine the set CF(σ|Z(ω,σ)).

Lemma 3.5 For any Toeplitz sequence ω one has EP(ω) ⊂ CF(σ|Z(ω,σ)).

Proof. Let ω = (ω1, ω2, . . . ) be a Toeplitz sequence and p ∈ EP(ω). Pick m ≥ 1
such that ωm = ωm+kp for k = 1, 2, . . . while for any 1 ≤ p′ < p the sequence
ωm, ωm+p′ , ωm+2p′ , . . . contains an element different from ωm.

Denote ωm by a. For any ω′ = (ω1, ω2, . . . ) ∈ Z(ω, σ) consider the set R(ω′) of
cosets α ∈ Z/pZ such that ω′

n = a for all n ∈ α, n > 0. Lemma 3.1 implies that
m + pZ ∈ R(ω). Besides, p′ + R(ω) 6= R(ω) for any 1 ≤ p′ < p as otherwise ωm =
ωm+p′ = ωm+2p′ = . . . It follows that the sets R(ω), 1 + R(ω), . . . , (p − 1) + R(ω)
are all distinct.

By Lemma 3.1, R(σω′) = −1 + R(ω′) for all ω′ ∈ Z(ω, σ). By Lemma 3.3, the
set R(ω′) is locally constant as a function of ω′. It follows that for any ω′ ∈ Z(ω, σ)
we have R(ω′) = −α(ω′)+R(ω), where α(ω′) ∈ Z/pZ. Moreover, α(ω′) is uniquely
determined by ω′, the mapping ω′ 7→ α(ω′) is continuous, and α(σω′) = α(ω′)+1.
Thus the odometer on Z/pZ is a continuous factor of the subshift σ|Z(ω,σ). That
is, p ∈ CF(σ|Z(ω,σ)).

Proposition 3.6 Suppose ω is a Toeplitz sequence. Then a positive integer n
belongs to CF(σ|Z(ω,σ)) if and only if n divides the least common multiple of some
n1, n2 . . . , nk ∈ EP(ω). Equivalently, CF(σ|Z(ω,σ)) is the smallest set of positive
integers that contains EP(ω) and satisfies assumptions (i), (ii), (iii) of Lemma
2.10.

Proof. For any integer n ≥ 1 let pn be the smallest positive integer such that
ωn = ωn+kpn

for k = 1, 2, . . . . Clearly, pn ∈ EP(ω). Moreover, the sequence
p1, p2, . . . contains all essential partial periods of ω. For any m ≥ 1 let qm =
lcm(p1, p2, . . . , pm). Then ωn = ωn+kqm

for all n ∈ {1, 2, . . . ,m} and k ≥ 1. In
particular, the first m elements of the sequence σqmω are the same as the first m
elements of ω. It follows that σqmω → ω as m → ∞.

Suppose n ∈ CF(σ|Z(ω,σ)), i.e., the subshift σ|Z(ω,σ) is a continuous extension
of a cyclic permutation T : X → X of order n. Let f : Z(ω, σ) → X be a
continuous map such that fσ = Tf . Since σqmω → ω as m → ∞, we have that
f(σqmω) → f(ω) as m → ∞. But X is a finite set with the discrete topology so
f(σqmω) = T qmf(ω) actually coincides with f(ω) for large m. It follows that n
divides qm for large m.

Let F0 denote the smallest set of positive integers that contains EP(ω) and sat-
isfies assumptions (i), (ii), (iii) of Lemma 2.10. Clearly, a positive integer belongs
to F0 if and only if it divides lcm(n1, n2, . . . , nk) for some n1, n2, . . . , nk ∈ EP(ω).
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By the above CF(σ|Z(ω,σ)) ⊂ F0. On the other hand, EP(ω) ⊂ CF(σ|Z(ω,σ)) due
to Lemma 3.5. Then it follows from Lemma 2.8 that F0 ⊂ CF(σ|Z(ω,σ)). Thus
CF(σ|Z(ω,σ)) = F0.

Lemma 3.7 Let ω be a Toeplitz sequence, T : X → X be a maximal odometer
factor of σ|Z(ω,σ), and f : Z(ω, σ) → X be a continuous map such that Tf = fσ
on Z(ω, σ). Then, given ω′ ∈ Z(ω, σ), the equation f(η) = f(ω′) has a solution η
different from ω′ if and only if ω′ is not a Toeplitz sequence.

Proof. We have X = Zn1 × Zn2 × . . . for some positive integers n1, n2, . . . . For
any integer k ≥ 1 let mk = n1n2 · · ·nk. Given a sequence x = (x1, x2, . . . ) ∈ X
and an integer N ≥ 1, the first k elements of the sequence TNx match the first k
elements of x if and only if mk divides N . Consequently, TNix → x as i → ∞ if
and only if each mk divides all but finitely many of the numbers N1, N2, . . . .

First assume that ω′ = (ω′

1, ω
′

2, . . . ) ∈ Z(ω, σ) is not a Toeplitz sequence.
Then there exists an index m ≥ 1 such that for any integer p ≥ 1 a subsequence
ω′

m, ω′

m+p, ω
′

m+2p, . . . is not constant. That is, ω′

m 6= ω′

m+N(p)p for some N(p) ≥ 1.

Take any limit point ω′′ of a sequence σN(m1)m1ω′, σN(m2)m2ω′, . . . . By the above,
f(σN(mk)mkω′) = TN(mk)mkf(ω′) → f(ω′) as k → ∞. Therefore f(ω′′) = f(ω′).
By construction, the sequences ω′′ and ω′ differ at least in the mth element.

Now consider the case when ω′ is a Toeplitz sequence. Take any η ∈ Z(ω, σ)
such that f(η) = f(ω′). According to Lemma 3.2, the subshift σ|Z(ω,σ is minimal.
Hence Z(ω′, σ) = Z(ω, σ). Then for some integers 0 ≤ N1 ≤ N2 ≤ . . . we have
σNiω′ → η as i → ∞, which implies that TNif(ω′) = f(σNiω′) → f(η) = f(ω′)
as i → ∞. By the above each mk divides all but finitely many of the numbers
N1, N2, . . . . Since ω′ is a Toeplitz sequence, for any index m ≥ 1 there exists p ∈
EP(ω′) such that ω′

m = ω′

m+np, n = 1, 2, . . . . By Lemma 3.5, a cyclic permutation
of order p is a continuous factor of the subshift σ|Z(ω,σ). Then Lemma 2.6 implies
that p divides some mk. Hence p divides Ni for all sufficiently large i, which implies
that ω′

m+Ni
= ω′

m for all sufficiently large i. It follows that the mth element of
the sequence η equals ω′

m. As the choice of m was arbitrary, we conclude that
η = ω′.

Using notation of Lemma 3.7, let Ω0 be the set of all Toeplitz sequences in
Z(ω, σ). Clearly, Ω0 is invariant under the shift. According to Lemma 3.7, Ω0

is the largest subset of Z(ω, σ) such that the restriction of the mapping f to Ω0

is one-to-one. By Lemma 3.4, Ω0 is a residual subset of Z(ω, σ). One might say
that, generically, the dynamics of the subshift σ|Z(ω,σ) is that of the odometer T .
However the dynamics of this subshift as a whole can be much more complicated.
In the next section we will consider a class of Toeplitz sequences ω for which the
subshift σ|Z(ω,σ) is as close to an odometer as it gets.
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4 Substitution subshift

Given a finite alphabet A, we denote by A∗ the set of all finite words in this
alphabet. Any w ∈ A∗ is simply an arbitrary finite sequence of elements from
A. A∗ is a monoid with respect to concatenation (the unit element is the empty
word). The concatenation of a word w ∈ A∗ with a sequence ω ∈ AN is also
naturally defined, which gives rise to an action of the monoid A∗ on AN.

Consider an arbitrary map τ : A → A∗. Since A∗ is the free monoid generated
by A, the map τ can be extended to a homomorphism of A∗ to itself. Given
a word w ∈ A∗, the word τ(w) is obtained by substituting the word τ(a) for
each occurence of any letter a ∈ A in w. The latter procedure applies to infinite
words as well, which gives rise to a transformation of AN called a substitution.
For convenience, we use the notation τ for both the homomorphism of A∗ and
the transformation of AN. Formally, the map τ : A → A∗ is uniquely extended
to a transformation of the set A∗ ∪AN such that τ(uw) = τ(u)τ(w) and τ(uω) =
τ(u)τ(ω) for all u,w ∈ A∗ and ω ∈ AN.

Let τ be a substitution on AN induced by a map τ : A → A∗ as described
above. We assume τ to be non-degenerate in that the word τ(b) is nonempty for
any letter b ∈ A. Suppose that for some letter a ∈ A the word τ(a) begins with
a and contains more than one letter. Consider the words a, τ(a), τ 2(a), τ 3(a), . . . .
It easily follows by induction that each word in this sequence is a beginning of the
next one and that each word is shorter than the next one. Therefore the finite
words a, τ(a), τ 2(a), τ 3(a), . . . in a sense converge to an infinite sequence ω ∈ AN.
Namely, ω is the unique infinite sequence such that each τ k(a) is a beginning of
ω. By construction, the sequence ω is a fixed point of the substitution τ . The
associated subshift σ|Z(ω,σ) is called a substitution subshift.

In this paper, we are mostly interested in a substitution τG over the alphabet
A = {a, b, c, d} that arises in the study of the Grigorchuk group. τG is defined by
relations

τG(a) = aca, τG(b) = d, τG(c) = b, τG(d) = c.

This substitution has a unique invariant sequence ω(G) that is the limit of finite
words τ k

G(a), k = 1, 2, . . . . The following lemma provides a complete description

of the sequence ω(G) =
(

ω
(G)
1 , ω

(G)
2 , . . .

)

.

Lemma 4.1 Let m = 2k(2n + 1), where k, n ≥ 0 are integers. If k = 0 then

ω
(G)
m = a. In the case k > 0, we have ω

(G)
m = d, c, or b if the remainder of k under

division by 3 is 0, 1, or 2, respectively.

Proof. The first two letters of the infinite word ω(G) are ac. For any letter
l ∈ {b, c, d} we have τG(al) = acal′, where l′ = τG(l) is another letter from
{b, c, d}. Using inductive argument, we derive from these simple observations that

ω
(G)
m = a if and only if m is odd. Furthermore, ω

(G)
4n−2 = c and ω

(G)
4n = τG

(

ω
(G)
2n

)

for
n = 1, 2, . . . .
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Let m = 2k(2n + 1), where k, n ≥ 0 are integers. If k = 0 then ω
(G)
m = a since

m is odd. If k = 1 then ω
(G)
m = c. If k > 1 then ω

(G)
m = τ k−1

G

(

ω
(G)
2(2n+1)

)

= τ k−1
G (c).

It remains to notice that τ k−1
G (c) = d, c, or b if the remainder of k under division

by 3 is 0, 1, or 2, respectively.

Lemma 4.2 ω(G) is a Toeplitz sequence. The set EP
(

ω(G)
)

of its essential partial
periods consists of all powers of 2.

Since ω(G) is a Toeplitz sequence, Lemma 3.3 applies to it. In fact, in this
particular case a much stronger statement holds.

Lemma 4.3 Let ω = (ω1, ω2, . . . ) ∈ Z
(

ω(G), σ
)

. Given positive integers p and m,
if ωm = ωm+p = ωm+2p = ωm+3p, then ωm+np = ωm for all n ≥ 1.

Proof of Lemmas 4.2 and 4.3. For any integer m > 0 let d(m) denote
the largest nonnegative integer such that 2d(m) divides m. Clearly, d(m1m2) =
d(m1)+d(m2) and d(m1 +m2) ≥ min(d(m1), d(m2)). Moreover, if d(m1) 6= d(m2)
then d(m1 + m2) = min(d(m1), d(m2)).

According to Lemma 4.1, any element ω
(G)
m of the sequence ω(G) is uniquely

determined by d(m). In particular, ω
(G)
m 6= ω

(G)
n whenever |d(m) − d(n)| = 1.

Take any integers p,m ≥ 1. If d(p) > d(m) then d(m + np) = d(m) for all

n ≥ 1, which implies that ω
(G)
m+np = ω

(G)
m for all n ≥ 1.

In the case d(p) = d(m), we have d(m+p) > d(m). If, in addition, d(m+p) >
d(m)+1 = d(2p) then d(m+3p) = d(2p) = d(m)+1. Therefore d(m+p)−d(p) = 1
or d(m + 3p) − d(p) = 1.

In the case d(p) < d(m), we have d(m + p) = d(p). If, in addition, d(m) >
d(p) + 1 = d(2p) then d(m + 2p) = d(2p) = d(p) + 1 = d(m + p) + 1. Therefore
d(m) − d(m + p) = 1 or d(m + 2p) − d(m + p) = 1.

By the above the equalities ω
(G)
m = ω

(G)
m+p = ω

(G)
m+2p = ω

(G)
m+3p cannot hold

simultaneously if d(p) ≤ d(m).
Denote by Ω the set of all sequences ω = (ω1, ω2, . . . ) ∈ AN such that, given

arbitrary integers p,m > 0, we have ωm+np = ωm for all n ≥ 1 whenever this
holds for 1 ≤ n ≤ 3. It is easy to observe that the set Ω is shift-invariant and
closed. We have just shown that ω(G) ∈ Ω. It follows that Z

(

ω(G), σ
)

⊂ Ω, which
is exactly what Lemma 4.3 states.

We proceed to the proof of Lemma 4.2. Given an integer m ≥ 1, let p =
2d(m)+1. Then d(p) = d(m) + 1 > d(m). This implies ω

(G)
m+np = ω

(G)
m for all n ≥ 1.

On the other hand, take any 1 ≤ p′ < p. Then d(p′) < d(p) or, equivalently,

d(p′) ≤ d(m). By the above ω
(G)
m+np′ 6= ω

(G)
m for some 1 ≤ n ≤ 3. Since m can be

chosen arbitrarily, we conclude that ω(G) is a Toeplitz sequence and EP
(

ω(G)
)

=

{2d(m)+1 | m ≥ 1} = {2k | k ≥ 1}.
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The remainder of this section is devoted to the study of the subshift σ|Z(ω,σ)

associated to a Toeplitz sequence ω with EP(ω) = {2k | k ≥ 1}. We shall see that
the latter condition completely determines the dynamics of the subshift. Note
that, in general, σ|Z(ω,σ) is not a substitution subshift.

Proposition 4.4 Let ω be a Toeplitz sequence such that EP(ω) = {2k | k ≥ 1}.
Then

• the preimage under the subshift σ|Z(ω,σ) of any sequence ω′ ∈ Z(ω, σ) is
nonempty;

• there exists a unique sequence ω∗ ∈ Z(ω, σ) for which this preimage contains
more than one sequence;

• a sequence ω′ ∈ Z(ω, σ) is not a Toeplitz sequence if and only if σnω′ = ω∗

for some n ≥ 1.

In the case ω = ω(G), we have ω∗ = ω(G). The preimage of ω(G) under the subshift
consists of three sequences bω(G), cω(G), and dω(G).

Proof. Let ω = (ω1, ω2, . . . ). Take an arbitrary integer k ≥ 1. Since 2k ∈ EP(ω),
there exist a letter lk ∈ A and an index mk ≥ 1 such that ωmk+2kn = lk, n =
0, 1, 2, . . . , but for any 1 ≤ p < 2k the sequence ωmk

, ωmk+p, ωmk+2p, . . . contains
an element different from lk. Lemma 3.1 implies that ωn = lk for every positive
n ≡ mk mod 2k. It follows that mK 6≡ mk mod 2k if K > k. As a consequence,
the congruence classes m1 + 2Z,m2 + 22Z, . . . are pairwise disjoint.

Let U0 = Z and Uk = Uk−1\(mk +2kZ) for k ≥ 1. Since m1 +2Z,m2 +22Z, . . .
are pairwise disjoint sets, it follows that each Uk is a congruence class modulo 2k.
That is, Uk = Mk + 2kZ for a unique 1 ≤ Mk ≤ 2k. By construction, Mk ≡
Mk+1 mod 2k. Hence Mk+1 = Mk or Mk+1 = Mk +2k. In particular, the sequence
M1,M2, . . . is nondecreasing. Note that ωm+2k = ωm for any positive integer
m 6≡ Mk mod 2k. This implies that the sequence ωMk

, ωMk+2k , . . . , ωMk+2kn, . . .
contains an element different from ωMk

as otherwise ω will be periodic (with period
2k), which is impossible since EP(ω) is an infinite set. On the other hand, since
all essential partial periods of ω are powers of 2, we do have ωMk+2Kn = ωMk

for
some K > k and n = 1, 2, . . . . Then Mk < MK . Hence the sequence M1,M2, . . .
tends to infinity. As a consequence, the intersection of sets U0, U1, U2, . . . contains
no positive integer (and at most one nonpositive integer).

The sequences l1, l2, . . . and M1,M2, . . . can be used to reconstruct the se-
quence ω. Namely, ωm = lk whenever m ∈ Uk−1 \ Uk, that is, m 6≡ Mk mod 2k

while m ≡ Mk−1 mod 2k−1. Observe that the sequence of letters l1, l2, . . . is not
eventually constant as otherwise ω would be periodic.

Now consider an arbitrary sequence ω′ = (ω′

1, ω
′

2, . . . ) ∈ Z(ω, σ). We have
σniω → ω′ as i → ∞ for some 0 ≤ n1 ≤ n2 ≤ . . . . Since 2k ∈ EP(ω) for
any k ≥ 1, it follows from Lemma 3.5 that a cyclic permutation of order 2k
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is a continuous factor of the subshift σ|Z(ω,σ). As a consequence, the sequences
σn1ω, σn2ω, . . . may converge in Z(ω, σ) only if the numbers n1, n2, . . . eventually
have the same remainder rk under division by 2k. Furthermore, the remainder
rk depends only on the limit sequence ω′ and not on the choice of ni. Therefore
we have a unique, well defined integer 1 ≤ Mk(ω

′) ≤ 2k such that Mk(ω
′) + rk ≡

Mk mod 2k. Observe that Mk(ω) = Mk and Mk(σω′) + 1 ≡ Mk(ω
′) mod 2k. By

construction, rk+1 ≡ rk mod 2k, which implies that Mk+1(ω
′) ≡ Mk(ω

′) mod 2k.
In other words, the congruence classes Mk(ω

′) + 2kZ, k ≥ 1 are nested just as in
the case ω′ = ω. There is more similarity. For example, we know that a sequence
ωm, ωm+2k , . . . , ωm+2kn, . . . is constant whenever m 6≡ Mk mod 2k, while it is not
constant for m = Mk. It follows that a sequence ω′

m, ω′

m+2k , . . . , ω
′

m+2kn
, . . . is

constant whenever m 6≡ Mk(ω
′) mod 2k. On the other hand, this sequence is not

constant for m = Mk(ω
′) as otherwise ω′ will be periodic (with period 2k), which

is impossible since the orbit ω′, σω′, σ2ω′, . . . is dense in the infinite set Z(ω, σ)
due to Lemma 3.2. Actually, the only difference of the general case from the case
ω′ = ω is that the sequence M1(ω

′),M2(ω
′), . . . may not tend to infinity.

The sequences l1, l2, . . . and M1(ω
′),M2(ω

′), . . . can be used to reconstruct
the sequence ω′. We know that ωm = lk whenever m 6≡ Mk mod 2k and m ≡
Mk−1 mod 2k−1. It follows that ω′

m = lk whenever m 6≡ Mk(ω
′) mod 2k and m ≡

Mk−1(ω
′) mod 2k−1. If Mk(ω

′) → ∞ as k → ∞, then this is enough to reconstruct
ω′. Also, this implies that ω′ is a Toeplitz sequence. Otherwise, when the sequence
M1(ω

′),M2(ω
′), . . . is eventually constant, we still need to determine an element

ωM∞
, where M∞ is the limit of Mk(ω

′) as k → ∞. By the way, M∞ completely
determines the sequence M1(ω

′),M2(ω
′), . . . as Mk(ω

′) ≡ M∞ mod 2k, k ≥ 1.
Let l∞(ω′) = ωM∞

. Along with the letter l∞(ω′), the sequences l1, l2, . . . and
M1(ω

′),M2(ω
′), . . . determine ω′ uniquely. Notice that the letter l∞(ω′) must

occur infinitely often in the sequence l1, l2, . . . . Indeed, assume that some a ∈ A
never occurs in a subsequence lk, lk+1, . . . . Then ωm = a implies ωm+2k−1 = a for
any m ≥ 1. Consequently, ω′

m = a implies ω′

m+2k−1 = a for any m ≥ 1. It follows
that ω′

MK(ω′) 6= a for all K ≥ k − 1.
Next consider an arbitrary sequence of integers M ′

1,M
′

2, . . . such that 1 ≤
M ′

k ≤ 2k and M ′

k+1 = M ′

k mod 2k for all k ≥ 1. We associate to it another
sequence of positive integers R1, R2, . . . defined by Rk = Mk − M ′

k + 2k. For any
k ≥ 1 the numbers Rk, Rk+1, . . . have the same remainder rk under division by 2k.
Clearly, M ′

k + rk ≡ Mk mod 2k. It follows from the above that any limit point ω′

of the sequence σR1ω, σR2ω, . . . satisfies Mk(ω
′) = M ′

k for all k ≥ 1. In particular,
there exists a sequence ω∗ ∈ Z(ω, σ) such that Mk(ω

∗) = 2k, k = 1, 2, . . . . Such a
sequence is unique since 2k → ∞ as k → ∞.

Further, assume that the sequence M ′

1,M
′

2, . . . from the previous paragraph is
eventually constant and denote by M∞ its limit. By the above there is at least one
ω′ = (ω′

1, ω
′

2, . . . ) ∈ Z(ω, σ) such that Mk(ω
′) = M ′

k for all k ≥ 1. Pick any letter
l ∈ A that occurs infinitely often in the sequence l1, l2, . . . . Let ω′′ be the sequence
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obtained from ω′ by substituting l for a single element ω′

M∞
. We shall show that

ω′′ ∈ Z(ω, σ). Given an integer k ≥ 1, a sequence ω′

m, ω′

m+2k , . . . , ω
′

m+2kn
, . . . is

constant whenever m 6≡ Mk(ω
′) ≡ M∞ mod 2k. On the other hand, in the case

m = M∞ this sequence is not constant as it contains all letters that occur in the
sequence lk+1, lk+2, . . . . In particular, ω′

M∞+2kn
= l for some n ≥ 0. Then the first

2k elements of the shifted sequence σ2knω′ coincide with the first 2k elements of
ω′′. Since k can be chosen arbitrarily large, it follows that ω′′ ∈ Z(ω, σ). Note
that Mk(ω

′′) = Mk(ω
′) = M ′

k for all k ≥ 1 and that l∞(ω′′) = l.
We already know that a sequence ω′ ∈ Z(ω, σ) is a Toeplitz sequence if

Mk(ω
′) → ∞ as k → ∞. Let us show that ω′ is not a Toeplitz sequence if the

sequence M1(ω
′),M2(ω

′), . . . is eventually constant. As follows from the above,
in this case there exists a sequence ω′′ ∈ Z(ω, σ) that differs from ω′ in a single
element. Then σnω′ = σnω′′ for some n ≥ 1. Now we are going to apply Lemma
3.7. Let T : X → X be a maximal odometer factor of the subshift σ|Z(ω,σ) and
f : Z(ω, σ) → X be a continuous map such that Tf = fσ on Z(ω, σ). Since
σnω′ = σnω′′, we obtain T n(f(ω′)) = T n(f(ω′′)). But every odometer is a one-to-
one mapping, which implies that f(ω′) = f(ω′′). By Lemma 3.7, neither ω′ nor
ω′′ is a Toeplitz sequence.

Recall that Mk(σω′) + 1 ≡ Mk(ω
′) mod 2k for all k ≥ 1 and ω′ ∈ Z(ω, σ).

Consequently, for any n ≥ 1 we have Mk(σ
nω′) + n ≡ Mk(ω

′) mod 2k. It follows
that the sequence M1(ω

′),M2(ω
′), . . . has a finite limit n if and only if Mk(σ

nω′) =
2k for all k ≥ 1. An equivalent condition is that σnω′ = ω∗. Thus a sequence
ω′ ∈ Z(ω, σ) is not a Toeplitz sequence if and only if σnω′ = ω∗ for some n ≥ 1.

By the above two sequences ω′, ω′′ ∈ Z(ω, σ) coincide if and only if Mk(ω
′) =

Mk(ω
′′) for k = 1, 2, . . . and either the sequence M1(ω

′),M2(ω
′), . . . tends to

infinity, or else it is eventually constant and l∞(ω′) = l∞(ω′′). Take any ω′ ∈
Z(ω, σ) and consider a unique sequence of integers M ′

1,M
′

2, . . . such that 1 ≤
M ′

k ≤ 2k and Mk(ω
′) + 1 ≡ M ′

k mod 2k for all k ≥ 1. The congruency classes
M ′

k + 2kZ, k ≥ 1 are nested since the congruency classes Mk(ω
′) + 2kZ, k ≥ 1

are nested. As shown above, this implies the existence of an ω′′ ∈ Z(ω, σ) such
that Mk(ω

′′) = M ′

k, k ≥ 1. Let S be the set of all such ω′′. The set S contains
a single point if M ′

k → ∞ as k → ∞. Otherwise S contains several points; they
are distinguished by l∞(ω′′), which can be any letter that occurs infinitely often
in the sequence l1, l2, . . . . Clearly, a sequence ω′′ ∈ Z(ω, σ) belongs to S if and
only if Mk(σω′′) = Mk(ω

′) for all k ≥ 1. If Mk(ω
′) → ∞ as k → ∞, then S is

exactly the preimage of ω′ under the subshift σ|Z(ω,σ). If, in addition, ω′ 6= ω∗,
then M ′

1,M
′

2, . . . tend to infinity as well so that the set S consists of a single
point. In the case ω′ = ω∗, all M ′

k are equal to 1 so that S contains more than
one point. Finally, consider the case when the sequence M1(ω

′),M2(ω
′), . . . is

eventually constant. Then the sequence M ′

1,M
′

2, . . . is also eventually constant.
For any ω′′ ∈ S we have l∞(σω′′) = l∞(ω′′). Hence the preimage of ω′ under the
subshift consists of a unique ω′′ ∈ S such that l∞(ω′′) = l∞(ω′).
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The general part of the proposition is proved. It remains to consider a partic-
ular case ω = ω(G). According to Lemma 4.1, in this case the sequence l1, l2, . . .
is eventually periodic with period 3: a, c, b, d, c, b, d, . . . . Moreover, Mk = 2k for
any k ≥ 1. This means that ω(G) = ω∗. By the above the preimage of ω(G) under
the subshift σ|Z(ω(G),σ) consists of all sequences of the form lω(G), where l ∈ A is
a letter that occurs infinitely often in the sequence l1, l2, . . . . We have three such
letters: b, c, and d.

Theorem 4.5 Let ω be a Toeplitz sequence such that EP(ω) = {2k | k ≥ 1}.
Then the maximal odometer factor of the subshift σ|Z(ω,σ) is the binary odometer.

Moreover, the subshift σ|Z(ω,σ) is, up to a countable set, continuously conjugated
to the binary odometer. To be precise, there exist a countable set Ω1 ⊂ Z(ω, σ)
and a continuous mapping f of Z(ω, σ) onto the ring Z2 of dyadic integers such
that f(σω′) = f(ω′) + 1 for all ω′ ∈ Z(ω, σ), the complement Z(ω, σ) \Ω1 is shift
invariant and f is one-to-one when restricted to Z(ω, σ) \ Ω1.

Proof. Proposition 3.6 implies that CF
(

σ|Z(ω,σ)

)

= {2k | k ≥ 0}. That is, a
nontrivial cyclic permutation is a continuous factor of the subshift σ|Z(ω,σ) if and
only if its order is a power of 2. Let T0 denote the odometer on Z2 × Z2 × . . . .
By Lemma 2.6, CF(T0) = {2k | k ≥ 0} = CF

(

σ|Z(ω,σ)

)

. Then it follows from
Proposition 2.12 that T0 is a maximal odometer factor of σ|Z(ω,σ). Finally, T0 is
continuously conjugated to the binary odometer due to Lemma 2.14.

Thus there exists a continuous onto mapping f : Z(ω, σ) → Z2 such that
f(σω′) = f(ω′) + 1 for all ω′ ∈ Z(ω, σ). Denote by Ω0 the set of all Toeplitz
sequences in Z(ω, σ). Obviously, the set Ω0 is shift invariant. According to Lemma
3.7, the map f is one-to-one when restricted to Ω0. By Proposition 4.4, there exists
a sequence ω∗ ∈ Z(ω, σ) such that any ω′ ∈ Ω1 = Z(ω, σ) \Ω0 satisfies σnω′ = ω∗

for some n ≥ 1. For any fixed n there are only finitely many sequences ω′ satisfying
this relation. Therefore Ω1 is a countable set.

Theorem 4.5 applies to the sequence ω(G). Hence there exists a continuous
map fG : Z(ω(G), σ) → Z2 such that fG(σω′) = fG(ω′) + 1 for all ω′ ∈ Z(ω(G), σ).
According to Lemma 2.3, we can choose this map so that fG(ω(G)) = 0; then it is
uniquely determined. Recall that any dyadic integer z ∈ Z2 is uniquely expanded
into a series

∑

∞

i=1 ni2
i−1, where ni ∈ {0, 1}. Therefore the map fG can be regarded

as a symbolic map that takes an infinite word over the alphabet A and assigns
to it an infinite word over the alphabet {0, 1}. The proof of Proposition 4.4
suggests an algorithm for effective computation of fG. Take an arbitrary sequence
ω′ = (ω′

1, ω
′

2, . . . ) ∈ Z(ω(G), σ). For any integer k ≥ 1 there exists a unique
integer 1 ≤ Mk ≤ 2k such that the subsequence ω′

Mk
, ω′

Mk+2k , . . . , ω
′

Mk+2kn
, . . . is

not constant. Note that 0 ≤ 2k − Mk < 2k. The dyadic expansion of the number
2k − Mk gives us the first k coefficients in the dyadic expansion of fG(ω′). That
is, if fG(ω′) =

∑

∞

i=1 ni2
i−1, where ni ∈ {0, 1}, then 2k − Mk =

∑k
i=1 ni2

i−1. By
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Lemma 4.3, ω′

Mk+2kn
6= ω′

Mk
already for some 1 ≤ n ≤ 3. It follows that the

first k coefficients in the dyadic expansion of fG(ω′) depend only on the first 2k+2

elements of the sequence ω′.

Theorem 4.6 Let ω be a Toeplitz sequence such that EP(ω) = {2k | k ≥ 1}.
Then

• there exists a unique Borel probability measure µ on Z(ω, σ) invariant under
the subshift σ̃ = σ|Z(ω,σ).

• The subshift σ̃ is ergodic with respect to the measure µ. Moreover, every
orbit of σ̃ is uniformly distributed with respect to µ.

• σ̃ has purely point spectrum, the eigenvalues being all roots of unity of order
1, 2, . . . , 2k, . . . . Each eigenvalue is simple.

• All eigenfunctions of σ̃ are continuous.

Proof. Let Ω1 be the smallest subset of Z(ω, σ) that contains all non-Toeplitz
sequences in Z(ω, σ) and is both forward and backward invariant under the sub-
shift σ̃. Proposition 4.4 implies that the set Ω1 is countable. Denote by Ω0 the
complement of Ω1 in Z(ω, σ).

By Theorem 4.5, the binary odometer is a maximal odometer factor of σ̃. Let
f : Z(ω, σ) → Z2 be a continuous function such that f(σω′) = f(ω′) + 1 for
all ω′ ∈ Z(ω, σ). Lemma 3.7 implies that f is one-to-one when restricted to Ω0.
Let X0 = f(Ω0) and denote by h the inverse of the restriction of f to Ω0. By
construction, the countable set X1 = f(Ω1) is the complement of X0 in Z2. It
follows that the mapping h : X0 → Ω0 is continuous. By Proposition 2.13, there
exists a unique Borel probability measure µ0 on Z2 that is invariant under the
binary odometer. For any Borel set B ⊂ Z(ω, σ) let µ(B) = µ0(h

−1(B ∩ Ω0)).
Then µ is a Borel measure on Z(ω, σ) invariant under the subshift σ̃. Note that
µ0(X1) = 0 since X1 is a countable set and the binary odometer has no finite
orbits. Therefore µ is a probability measure.

Suppose that µ′ is a Borel probability measure on Z(ω, σ) invariant under the
subshift σ̃. For any Borel set b ⊂ Z2 let µ′

0(b) = µ′(f−1(b)). It is easy to check
that µ′

0 is a Borel probability measure on Z2 invariant under the odometer. Hence
µ′

0 = µ0. It follows that µ′ coincides with µ on the set Ω0. Since Ω1 is a countable
set and the subshift σ̃ has no finite orbits, we obtain µ′(Ω1) = µ(Ω1) = 0 so that
µ′ = µ. Thus µ is the only shift-invariant Borel probability measure on Z(ω, σ).
It follows that the subshift σ̃ is ergodic with respect to µ, moreover, each orbit of
σ̃ is uniformly distributed in Z(ω, σ).

Since µ(Ω1) = µ0(X1) = 0, the subshift σ̃ and the binary odometer T0 are
isomorphic as measure-preserving transformations. Then Proposition 2.13 implies
that σ̃ has pure point spectrum, the eigenvalues of σ̃ are all nth roots of unity,
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where n runs through CF(T0), and all eigenvalues are simple. The set CF(T0)
coincides with CF(σ̃) due to Proposition 2.12. Further, CF(σ̃) = {2k | k ≥ 0} due
to Proposition 3.6.

To prove that all eigenfunctions of σ̃ are continuous, it is enough to show that
for any root of unity ζ of order 2k there exists an associated continuous eigenfuction
of σ̃. Let ζ0 = exp(2πi/2k). Then ζ = ζm

0 for some m ≥ 1. By Lemma 2.9, there
is a continuous eigenfunction φ of σ̃ associated with the eigenvalue ζ0. Then φm

is also a continuous eigenfunction and its eigenvalue is ζm
0 = ζ.

Proof of Theorems 1.1 and 1.2. According to Lemma 4.2, the sequence ω(G)

is a Toeplitz sequence with EP(ω(G)) = {2k | k ≥ 1}. Therefore Theorem 1.1 is a
particular case of Theorem 4.5 while Theorem 1.2 is a particular case of Theorem
4.6.
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