On stability of periodic billiard orbits in polyhedra

Suppose a group G is generated by elements a_{1}, \ldots, a_{n}. Then any element $g \neq 1$ of G is represented as a product $g_{1} g_{2} \ldots g_{k}$, where each g_{i} is a generator a_{j} or an inverse a_{j}^{-1}. The smallest k that allows such a representation is called the length of g. The length of the unit element is set to 0 . Notice that the length depends on the set of generators.

The group G generated by a_{1}, \ldots, a_{n} is called a free group with n generators $\left(a_{1}, \ldots, a_{n}\right.$ are called free generators) if for any group H and any $h_{1}, \ldots, h_{n} \in H$ there exists a unique homomorphism $f: G \rightarrow H$ such that $f\left(a_{i}\right)=h_{i}, 1 \leq i \leq n$. A nontrivial element $g \in G$ is represented as $a_{i_{1}}^{m_{1}} a_{i_{2}}^{m_{2}} \ldots a_{i_{l}}^{m_{l}}$, where $l \geq 1,1 \leq i_{j} \leq n$ and $m_{j} \neq 0$ for $1 \leq j \leq l$, and $i_{j} \neq i_{j+1}$ for $1 \leq j<l$. The group G is free if and only if such a representation is unique for any $g \neq 1$.

For any $\phi \in[0,2 \pi)$ let

$$
A_{\phi}=\left(\begin{array}{ccc}
\cos \phi & -\sin \phi & 0 \\
\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right), \quad B_{\phi}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right) .
$$

A_{ϕ} and B_{ϕ} are matrices of two rotations in \mathbb{R}^{3} by the angle ϕ.
Proposition 1 For all but countably many angles $\phi \in[0,2 \pi)$, the subgroup of $S O(3)$ generated by A_{ϕ} and B_{ϕ} is a free group with two generators.

Proof. Let G be a free group with two generators a and b. For any $\phi \in[0,2 \pi)$ let $F_{\phi}: G \rightarrow S O(3)$ be the homomorphism such that $F_{\phi}(a)=A_{\phi}$, $F_{\phi}(b)=B_{\phi}$. We have to prove that F_{ϕ} is injective for all but countably many angles ϕ. For any $g \in G$ let $F_{\phi}(g)=\left(c_{j k}[g](\phi)\right)_{1 \leq j, k \leq 3}$. Then $c_{j k}[g]$ are functions on $[0,2 \pi)$.

Let $n \geq 1$ be an integer. Recall that a trigonometric polynomial of degree n is a function $p: \mathbb{R} \rightarrow \mathbb{C}$ such that $p(\phi)=\alpha_{0}+\sum_{k=1}^{n}\left(\alpha_{k} \cos k \phi+\beta_{k} \sin k \phi\right)$ for some $\alpha_{k}, \beta_{k} \in \mathbb{C}$, where $\left(\alpha_{n}, \beta_{n}\right) \neq(0,0)$. A trigonometric polynomial of degree 0 is a constant function. The degree of a trigonometric polynomial p is denoted by $\operatorname{deg} p$. Since $\cos k \phi=\left(e^{i k \phi}+e^{-i k \phi}\right) / 2, \sin k \phi=\left(e^{i k \phi}-e^{-i k \phi}\right) /(2 i)$, a function p is a trigonometric polynomial of degree $n \geq 1$ if and only if $p(\phi)=\sum_{k=-n}^{n} \alpha_{k} e^{i k \phi}$ for some $\alpha_{k} \in \mathbb{C}$, where $\left(\alpha_{n}, \alpha_{-n}\right) \neq(0,0)$. Hence if p and q are trigonometric polynomials, then so are $p+q$ and $p q$. Moreover, $\operatorname{deg}(p+q) \leq \max (\operatorname{deg} p, \operatorname{deg} q), \operatorname{deg} p q \leq \operatorname{deg} p+\operatorname{deg} q$. If $\operatorname{deg} q<\operatorname{deg} p$ then $\operatorname{deg}(p+q)=\operatorname{deg} p$. It is possible that $\operatorname{deg} p q<\operatorname{deg} p+\operatorname{deg} q$, for example,
$(\cos \phi+i \sin \phi)(\cos \phi-i \sin \phi)=1$. However for any integers $m_{1}, \ldots, m_{l}>0$ the product $\cos m_{1} \phi \cos m_{2} \phi \ldots \cos m_{l} \phi$ is a trigonometric polynomial in ϕ of degree $m_{1}+\cdots+m_{l}$. Indeed, the equality $2 \cos m \phi \cos m^{\prime} \phi=\cos \left(m+m^{\prime}\right) \phi+$ $\cos \left(m-m^{\prime}\right) \phi$ implies $\cos m_{1} \phi \cos m_{2} \phi \ldots \cos m_{l} \phi-2^{1-l} \cos \left(m_{1}+\cdots+m_{l}\right) \phi$ is a trigonometric polynomial in ϕ of degree less than $m_{1}+\cdots+m_{l}$.

We claim that for any $g \in G$ the function $c_{22}[g]$ is a trigonometric polynomial of degree $|g|$, where $|g|$ is the length of g. It is easy to see that $c_{22}\left[a^{n}\right](\phi)=c_{22}\left[b^{n}\right](\phi)=\cos n \phi$ for all $n \in \mathbb{Z}$. Now suppose $g=g_{1}^{m_{1}} \ldots g_{l}^{m_{l}}$, where $l>1, m_{j} \neq 0$ for $1 \leq j \leq l,\left\{g_{1}, g_{2}\right\}=\{a, b\}, g_{j}=g_{1}$ if j is odd and $g_{j}=g_{2}$ if j is even. Then

$$
c_{22}[g]=\sum_{1 \leq j_{1}, \ldots, j_{l-1} \leq 3} c_{2 j_{1}}\left[g_{1}^{m_{1}}\right] c_{j_{1} j_{2}}\left[g_{2}^{m_{2}}\right] \ldots c_{j_{l-1} 2}\left[g_{l}^{m_{l}}\right] .
$$

It is easy to see that $c_{k s}\left[g_{j}^{m_{j}}\right]$ is a trigonometric polynomial of degree at most $\left|m_{j}\right|$. Therefore each summand in the above sum is a trigonometric polynomial of degree at most $\left|m_{1}\right|+\cdots+\left|m_{l}\right|=|g|$. Let $p=c_{22}\left[g_{1}^{m_{1}}\right] \ldots c_{22}\left[g_{l}^{m_{l}}\right]$. Clearly, $p(\phi)=\cos m_{1} \phi \ldots \cos m_{l} \phi$, hence $\operatorname{deg} p=|g|$. Consider a set of indices $j_{1}, \ldots, j_{l-1} \in\{1,2,3\}$ such that $j_{k} \neq 2$ for some k. It is no loss to assume that $j_{s}=2$ for $1 \leq s<k$. In the cases $g_{k}=a, j_{k}=3$ and $g_{k}=b$, $j_{k}=1$, we have $c_{2 j_{k}}\left[g_{k}^{m_{k}}\right]=0$. In the cases $g_{k}=a, j_{k}=1$ and $g_{k}=b$, $j_{k}=3$, we have $c_{j_{k} j_{k+1}}\left[g_{k+1}^{m_{k+1}}\right]=0$ or 1 (here $j_{k+1}=2$ if $k+1=l$). In any case $c_{2 j_{1}}\left[g_{1}^{m_{1}}\right] c_{j_{1} j_{2}}\left[g_{2}^{m_{2}}\right] \ldots c_{j_{l-1} 2}\left[g_{l}^{m_{l}}\right]$ is a trigonometric polynomial of degree less than $|g|$. It follows that $\operatorname{deg}\left(c_{22}[g]-p\right)<|g|$, hence $\operatorname{deg} c_{22}[g]=|g|$.

Let $g \in G, g \neq 1$. Then $|g| \geq 1$. Since $c_{22}[g]$ is a trigonometric polynomial of degree $n=|g|$, so is $c_{22}[g]-1$. It follows that $c_{22}[g](\phi)-1=e^{-i n \phi} P\left(e^{i \phi}\right)$, where P is a nonzero polynomial of degree at most $2 n$. Therefore $c_{22}[g](\phi)=$ 1 for at most $2 n$ values of $\phi \in[0,2 \pi)$. Clearly, $F_{\phi}(g)=1$ only if $c_{22}[g](\phi)=1$. Hence for all but countably many angles $\phi \in[0,2 \pi)$ we have $F_{\phi}(g)=1$ only if $g=1$. The latter property implies F_{ϕ} is injective.

Lemma 2 Suppose G is a free group with two generators a and b. Then the subgroup of G generated by elements $g_{k}=b^{k} a b^{-k}, 1 \leq k \leq n$, is a free group with n generators.

Proof. Suppose $g=g_{i_{1}}^{m_{1}} g_{i_{2}}^{m_{2}} \ldots g_{i_{l}}^{m_{l}}$, where $l \geq 1,1 \leq i_{j} \leq n$ and $m_{j} \neq 0$ for $1 \leq j \leq l$, and $i_{j} \neq i_{j+1}$ for $1 \leq j<l$. We have to prove that $g \neq 1$. If $l=1$ then $g=b^{i_{1}} a^{m_{1}} b^{-i_{1}}$. Otherwise $g=b^{i_{1}} a^{m_{1}} b^{i_{2}-i_{1}} a^{m_{2}} \ldots b^{i_{l}-i_{l-1}} a^{m_{l}} b^{-i_{l}}$. Since none of the integers $i_{1}, i_{2}-i_{1}, \ldots, i_{l}-i_{l-1},-i_{l}$ and m_{1}, \ldots, m_{l} is equal to zero, it follows that $g \neq 1$.

Suppose a group G is generated by n elements g_{1}, \ldots, g_{n} of order 2 . The group G is called the free product of n groups of order 2 (we say that g_{1}, \ldots, g_{n} freely generate G) if $G=\left\langle g_{1}, \ldots, g_{n} \mid g_{1}^{2}=\ldots=g_{n}^{2}=1\right\rangle$ or, equivalently, for any group H and any elements $h_{1}, \ldots, h_{n} \in H$ of order 2 there exists a unique homomorphism $f: G \rightarrow H$ such that $f\left(g_{i}\right)=h_{i}, 1 \leq i \leq n$. A nontrivial element $g \in G$ is represented as $g_{i_{1}} g_{i_{2}} \ldots g_{i_{l}}$, where $l \geq 1,1 \leq i_{j} \leq n$ for $1 \leq j \leq l$, and $i_{j} \neq i_{j+1}$ for $1 \leq j<l$. The group G is freely generated by n involutions if and only if such a representation is unique for any $g \neq 1$.

Lemma 3 Suppose G is a group generated by $n \geq 2$ elements g_{1}, \ldots, g_{n} of order 2. Then G is freely generated by n involutions if and only if elements $g_{1} g_{2}, g_{1} g_{3}, \ldots, g_{1} g_{n}$ generate a free group with $n-1$ generators.

Proof. Let H denote the subgroup of G generated by elements $h_{i}=g_{1} g_{i}$, $2 \leq i \leq n$. Consider an element $h=h_{i_{1}}^{\varepsilon_{1}} h_{i_{2}}^{\varepsilon_{2}} \ldots h_{i_{l}}^{\varepsilon_{l}}$, where $l \geq 1,2 \leq i_{j} \leq n$, $\varepsilon_{j}=1$ or -1 , and $\varepsilon_{j}=\varepsilon_{j+1}$ whenever $i_{j}=i_{j+1}$. Since $h_{i}=g_{1} g_{i}$ and $h_{i}^{-1}=g_{i} g_{1}$ for $2 \leq i \leq n$, we have $h=g_{0}^{\prime} g_{i_{1}} g_{1}^{\prime} \ldots g_{i} g_{l}^{\prime}$, where $g_{j}^{\prime}=g_{1}$ or 1 , $0 \leq j \leq l$. Moreover, $g_{j}^{\prime}=g_{1}$ whenever $\varepsilon_{j}=\varepsilon_{j+1}$. In particular, $h \neq 1$ if G is freely generated by the involutions g_{1}, \ldots, g_{n}. It follows that H is a free group with $n-1$ generators if G is freely generated by g_{1}, \ldots, g_{n}.

Now suppose H is the free group with free generators h_{2}, \ldots, h_{n}. To prove that G is freely generated by n involutions, it is sufficient to show that $g \neq 1$ whenever $g=g_{i_{1}} \ldots g_{i_{l}}$, where $l \geq 1,1 \leq i_{j} \leq n, i_{j} \neq i_{j+1}$. Note that $g_{i} g_{j}=h_{i}^{-1} h_{j}$ for $1 \leq i, j \leq n$, where by definition $h_{1}=1$. On the other hand, none of the elements g_{1}, \ldots, g_{n} belongs to H as a free group has no elements of order 2 . Hence if l is odd then $g \notin H$, in particular, $g \neq 1$. Consider the case when l is even. Here $g=h_{i_{1}}^{-1} h_{i_{2}} \ldots h_{i_{l-1}}^{-1} h_{i_{l}} \in H$. It is easy to see that the length of g in H is equal to the number of indices $j \in\{1, \ldots, l\}$ such that $i_{j} \neq 1$. As this number is positive, $g \neq 1$.

A vector plane in \mathbb{R}^{3} is uniquely determined by the orthogonal straight line. Therefore the set of planes in \mathbb{R}^{3} is parametrized by the projective plane $\mathbb{R} P^{2}$. Recall that elements of $\mathbb{R} P^{2}$ are one-dimensional subspaces of \mathbb{R}^{3}, i.e., straight lines passing through the origin. For any straight line $\gamma \in$ $\mathbb{R} P^{2}$ let $R[\gamma] \in O(3)$ be the matrix of the reflection of \mathbb{R}^{3} in the vector plane orthogonal to γ. Given $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R} P^{2}$, let $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ denote the homomorphism of the group $\mathbb{Z}_{2}^{* n}=\left\langle a_{1}, \ldots, a_{n} \mid a_{1}^{2}=\ldots=a_{n}^{2}=1\right\rangle$ to $O(3)$ such that $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]\left(a_{i}\right)=R\left[\gamma_{i}\right], 1 \leq i \leq n$.

Theorem 4 There exists a dense G_{δ}-set $U_{n} \subset\left(\mathbb{R} P^{2}\right)^{n}$ such that for any $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in U_{n}$ the homomorphism $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ is injective.

Proof. The case $n=1$ is trivial as $J[\gamma]$ is always injective. Consider the case $n>1$. Let γ_{1} denote the x-axis in \mathbb{R}^{3}. For any $\phi \in[0,2 \pi)$ the matrices $B_{\phi} A_{\phi} B_{\phi}^{-1}, B_{\phi}^{2} A_{\phi} B_{\phi}^{-2}, \ldots, B_{\phi}^{n-1} A_{\phi} B_{\phi}^{-(n-1)} \in S O(3)$ are matrices of rotations by ϕ about axes orthogonal to γ_{1}. It follows that there exist straight lines $\gamma_{2}, \ldots, \gamma_{n} \in \mathbb{R} P^{2}$ such that $B_{\phi}^{k-1} A_{\phi} B_{\phi}^{-(k-1)}=R\left[\gamma_{1}\right] R\left[\gamma_{k}\right]$ for $2 \leq k \leq n$. By Proposition 1, we can choose ϕ so that A_{ϕ} and B_{ϕ} generate a free subgroup of $S O(3)$ with two generators. Then Lemmas 2 and 3 imply that the subgroup of $O(3)$ generated by $R\left[\gamma_{1}\right], \ldots, R\left[\gamma_{n}\right]$ is freely generated by n involutions. This means $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ is an injective map.

Given $g \in \mathbb{Z}_{2}^{* k}$, let $U_{n}(g)$ denote the set of $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in\left(\mathbb{R} P^{2}\right)^{n}$ such that $J\left[\gamma_{1}, \ldots, \gamma_{n}\right](g) \neq 1$. Notice that $\mathbb{R} P^{2}$ is an analytic manifold. For any $\gamma \in \mathbb{R} P^{2}$ the orthogonal reflection of \mathbb{R}^{3} in the vector plane orthogonal to γ is given by the formula $v \mapsto v-2 \frac{\left(v, n_{\gamma}\right)}{\left(n_{\gamma}, n_{\gamma}\right)} n_{\gamma}$, where (\cdot, \cdot) denotes the scalar product and n_{γ} is a nonzero vector parallel to γ. The formula shows that $R[\gamma]$ is a real analytic matrix-valued function of $\gamma \in \mathbb{R} P^{2}$. Therefore $J\left[\gamma_{1}, \ldots, \gamma_{n}\right](g)$ is a real analytic matrix-valued function of $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in$ $\left(\mathbb{R} P^{2}\right)^{n}$. Since $\mathbb{R} P^{2}$ is connected, it follows that $U_{n}(g)$ is an open set that is either dense in $\left(\mathbb{R} P^{2}\right)^{n}$ or empty. By the above $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ is injective for some $\gamma_{1}, \ldots, \gamma_{n} \in \mathbb{R} P^{2}$. This implies $U_{n}(g)$ is not empty for any $g \neq 1$. Hence $U_{n}=\bigcap_{g \neq 1} U_{n}(g)$ is a dense G_{δ}-set. Obviously, $J\left[\gamma_{1}, \ldots, \gamma_{n}\right]$ is injective for any $\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in U_{n}$.

Let Π be a polyhedron in \mathbb{R}^{3}. A billiard orbit in Π is a (finite or infinite) broken line $x_{0} x_{1} \ldots$ such that (i) each x_{i} lies on the boundary of Π, moreover, x_{i} is an interior point of a face unless it is an endpoint of the broken line, (ii) the interior of each segment $x_{i} x_{i+1}$ is contained in the interior of Π, and (iii) the unit vectors $\frac{x_{i+1}-x_{i}}{\left|x_{i+1}-x_{i}\right|}$ and $\frac{x_{i+2}-x_{i+1}}{\left|x_{i+2}-x_{i+1}\right|}$ are symmetric with respect to the orthogonal reflection in the face containing x_{i+1}. The latter condition (the reflection rule) means that a billiard orbit is a trajectory of a pointmass moving freely within Π subject to elastic rebounds off the faces. One or both endpoints of a billiard orbit in Π may lie on edges of Π. A billiard orbit is called singular if this is the case. Any finite nonsingular billiard orbit can be continued to a singular or infinite one. A finite billiard orbit $x_{0} x_{1} \ldots x_{n}$ is called periodic if $x_{n}=x_{0}$ and the infinite periodic broken line $x_{0} x_{1} \ldots x_{n} x_{1} \ldots x_{n} x_{1} \ldots$ is a billiard orbit.

Suppose that faces of the polyhedron are labelled by elements of a finite set \mathcal{A}. Then each nonsingular billiard orbit $x_{0} x_{1} x_{2} \ldots$ is assigned a code word $w=a_{1} a_{2} \ldots$, where $a_{i} \in \mathcal{A}$ labels the face containing x_{i}.

Suppose Π_{1} and Π_{2} are polyhedra in \mathbb{R}^{3}. Given $\varepsilon>0$, we say that a face
f_{1} of Π_{1} is ε-close to a face f_{2} of Π_{2} if the distance from any point of f_{1} to f_{2} is less than ε and the distance from any point of f_{2} to f_{1} is less than ε. Note that ε-close faces need not have the same number of edges. Further, we say that the polyhedron Π_{2} is an ε-perturbation of Π_{1} if Π_{2} have the same number of faces as Π_{1}, and each face of Π_{2} is ε-close to a face of Π_{1}. Assume ε is so small that distinct faces of Π_{1} are not 2ε-close. Then ε-closeness provides a one-to-one correspondence between faces of Π_{1} and Π_{2}. In particular, any labeling of faces of Π_{1} induces a labeling of faces of Π_{2}. We shall say that a property of polyhedra can be achieved by an arbitrarily small perturbation of faces of a polyhedron Π if for any $\varepsilon>0$ there exists an ε-perturbation of Π with this property.

Lemma 5 Let Π be a polyhedron in \mathbb{R}^{3} and f_{1}, \ldots, f_{m} be faces of Π. Let $\gamma_{1}, \ldots, \gamma_{m} \in \mathbb{R} P^{2}$ be straight lines such that γ_{i} is orthogonal to f_{i}. Then for any $\varepsilon>0$ there exists $\delta>0$ with the following property: given $\tilde{\gamma}_{1}, \ldots, \tilde{\gamma}_{m} \in$ $\mathbb{R} P^{2}$ such that the angle between γ_{i} and $\tilde{\gamma}_{i}$ is less than δ, there exists an ε-perturbation $\widetilde{\Pi}$ of Π such that each $\tilde{\gamma}_{i}$ is orthogonal to a face of $\widetilde{\Pi}$.

Let Π be a polyhedron and $x_{0} x_{1} \ldots x_{n}$ be a finite nonsingular billiard orbit in Π. Given $\delta>0$, there exists $\varepsilon>0$ such that any ε-perturbation of Π admits a nonsingular billiard orbit $y_{0} y_{1} \ldots y_{n}$ such that y_{i} and x_{i} lie on ε-close faces and $\left|y_{i}-x_{i}\right|<\delta$. Assuming that faces of Π are labelled and ε is small enough, $y_{0} y_{1} \ldots y_{n}$ has the same code word as $x_{0} x_{1} \ldots x_{n}$. In the case $x_{0} x_{1} \ldots x_{n}$ is a periodic billiard orbit, we wish to know whether the billiard orbit $y_{0} y_{1} \ldots y_{n}$ can be chosen periodic too. The following theorem gives a partial answer to this question.

Theorem 6 Suppose there is a periodic billiard orbit with a code word w in a polyhedron Π. Then there exists an arbitrarily small perturbation of faces of Π such that the perturbed polyhedron admits at most one periodic billiard orbit with the code word w if w has even length, and no periodic billiard orbit with the code word w if w has odd length.

Proof. Let \mathcal{A} be the set whose elements label faces of Π. For any $a \in \mathcal{A}$ let f_{a} denote the face with label a and S_{a} denote the orthogonal reflection of \mathbb{R}^{3} in the affine plane containing f_{a}. Let $w=a_{1} \ldots a_{n}$. Obviously, $a_{i} \neq a_{i+1}$ for $1 \leq i<n$, and $a_{n} \neq a_{1}$. Suppose $x_{0} x_{1} \ldots x_{n}$ is a nonsingular billiard orbit in Π such that $x_{0} \in f_{a_{n}}$ and $x_{i} \in f_{a_{i}}, 1 \leq i \leq n$. We apply the socalled unfolding procedure to this orbit. Namely, consider polyhedra $\Pi_{0}=$ $\Pi, \Pi_{1}, \ldots, \Pi_{n}$ and affine orthogonal transformations $T_{0}=\mathrm{id}, T_{1}, \ldots, T_{n}$ such
that $\Pi_{i}=T_{i}(\Pi)(1 \leq i \leq n)$ and Π_{i} is symmetric to Π_{i-1} with respect to their common face $T_{i-1}\left(f_{a_{i}}\right)$. The polyhedra and the transformations are uniquely determined. By construction, $T_{i} T_{i-1}^{-1}=T_{i-1} S_{a_{i}} T_{i-1}^{-1}$. Hence $T_{i}=S_{a_{1}} S_{a_{2}} \ldots S_{a_{i}}, 1 \leq i \leq n$. Now let $x_{i}^{\prime}=T_{i}\left(x_{i}\right), 1 \leq i \leq n$. Then $x_{0} x_{1}^{\prime}=x_{0} x_{1} \subset \Pi$ and $x_{i}^{\prime} x_{i+1}^{\prime}=T_{i}\left(x_{i} x_{i+1}\right) \subset \Pi_{i}$ for $1 \leq i<n$. The reflection rule implies that segments $x_{0} x_{1}^{\prime}, x_{1}^{\prime} x_{2}^{\prime}, \ldots, x_{n-1}^{\prime} x_{n}^{\prime}$ form the single segment $x_{0} x_{n}^{\prime}$, which is called the unfolding of the billiard orbit $x_{0} x_{1} \ldots x_{n}$. Now suppose $x_{n}=x_{0}$. Then the vector $T_{n} x_{0}-x_{0}$ is of the same direction as $x_{1}-x_{0}$. It is easy to see that $x_{0} x_{1} \ldots x_{n}$ is a periodic billiard orbit if and only if the segment $T_{n}\left(x_{0} x_{1}\right)=x_{n}^{\prime} T_{n}\left(x_{1}\right) \subset \Pi_{n}$ continues $x_{0} x_{n}^{\prime}$. An equivalent condition is that $T_{n}\left(x_{1}\right)-T_{n}\left(x_{0}\right)=x_{1}-x_{0}$, i.e., the vector $x_{1}-x_{0}$ is invariant under the linear part L of T_{n}. In particular, 1 has to be an eigenvalue of L.

Suppose $x_{0} x_{1} \ldots x_{n}$ and $y_{0} y_{1} \ldots y_{n}$ are distinct periodic billiard orbits in Π with the code word w. Their unfoldings are $x_{0} T_{n}\left(x_{0}\right)$ and $y_{0} T_{n}\left(y_{0}\right)$. Since the two orbits are distinct, it follows that $y_{0} \neq x_{0}$. By the above vectors $T_{n}\left(x_{0}\right)-x_{0}$ and $T_{n}\left(y_{0}\right)-y_{0}$ are invariant under L. So is the vector $L v-v$, where $v=y_{0}-x_{0}$. Hence $(L-1)^{2} v=0$. Since L is an orthogonal operator, we obtain $L v=v$. Note that v is parallel to the face $f_{a_{n}}$ while $T_{n}\left(x_{0}\right)-x_{0}$ is not. This implies that 1 is a multiple eigenvalue of L.

For any $a \in \mathcal{A}$ let $\gamma_{a} \in \mathbb{R} P^{2}$ be the straight line orthogonal to the plane containing the face f_{a}. Then $R\left[\gamma_{a}\right]$ is the matrix of the linear part of S_{a}. Consequently, $M=R\left[\gamma_{a_{1}}\right] R\left[\gamma_{a_{2}}\right] \ldots R\left[\gamma_{a_{n}}\right]$ is the matrix of the linear part of T_{n}. Assume that the involutive matrices $R\left[\gamma_{a}\right], a \in \mathcal{A}$, freely generate a subgroup of $O(3)$. Since $a_{i} \neq a_{i+1}$ and $a_{n} \neq a_{1}$, it follows that $M \neq 1$ and $M^{2} \neq 1$. Hence if n is even then 1 is a simple eigenvalue of the matrix M. If n is odd then 1 is not an eigenvalue of M.

By Theorem 4 and Lemma 5, there exists an arbitrarily small perturbation of faces of Π such that matrices of the linear parts of orthogonal reflections in faces of the perturbed polyhedron $\widetilde{\Pi}$ freely generate a subgroup of $O(3)$. It follows from the above that the polyhedron $\widetilde{\Pi}$ admits at most one periodic billiard orbit with any fixed code word of even length and no periodic billiard orbits with code words of odd length.

