
On stability of periodic billiard orbits in polyhedra

Suppose a group G is generated by elements a1, . . . , an. Then any element
g 6= 1 of G is represented as a product g1g2 . . . gk, where each gi is a generator
aj or an inverse a−1

j . The smallest k that allows such a representation is called
the length of g. The length of the unit element is set to 0. Notice that the
length depends on the set of generators.

The group G generated by a1, . . . , an is called a free group with n gen-
erators (a1, . . . , an are called free generators) if for any group H and any
h1, . . . , hn ∈ H there exists a unique homomorphism f : G → H such that
f(ai) = hi, 1 ≤ i ≤ n. A nontrivial element g ∈ G is represented as
am1

i1
am2

i2
. . . aml

il
, where l ≥ 1, 1 ≤ ij ≤ n and mj 6= 0 for 1 ≤ j ≤ l, and

ij 6= ij+1 for 1 ≤ j < l. The group G is free if and only if such a representa-
tion is unique for any g 6= 1.

For any φ ∈ [0, 2π) let

Aφ =

 cos φ − sin φ 0
sin φ cos φ 0

0 0 1

 , Bφ =

 1 0 0
0 cos φ − sin φ
0 sin φ cos φ

 .

Aφ and Bφ are matrices of two rotations in R3 by the angle φ.

Proposition 1 For all but countably many angles φ ∈ [0, 2π), the subgroup
of SO(3) generated by Aφ and Bφ is a free group with two generators.

Proof. Let G be a free group with two generators a and b. For any
φ ∈ [0, 2π) let Fφ : G → SO(3) be the homomorphism such that Fφ(a) = Aφ,
Fφ(b) = Bφ. We have to prove that Fφ is injective for all but countably
many angles φ. For any g ∈ G let Fφ(g) = (cjk[g](φ))1≤j,k≤3. Then cjk[g] are
functions on [0, 2π).

Let n ≥ 1 be an integer. Recall that a trigonometric polynomial of degree
n is a function p : R → C such that p(φ) = α0 +

∑n
k=1(αk cos kφ + βk sin kφ)

for some αk, βk ∈ C, where (αn, βn) 6= (0, 0). A trigonometric polynomial of
degree 0 is a constant function. The degree of a trigonometric polynomial p is
denoted by deg p. Since cos kφ = (eikφ+e−ikφ)/2, sin kφ = (eikφ−e−ikφ)/(2i),
a function p is a trigonometric polynomial of degree n ≥ 1 if and only if
p(φ) =

∑n
k=−n αke

ikφ for some αk ∈ C, where (αn, α−n) 6= (0, 0). Hence if
p and q are trigonometric polynomials, then so are p + q and pq. Moreover,
deg(p + q) ≤ max(deg p, deg q), deg pq ≤ deg p + deg q. If deg q < deg p then
deg(p + q) = deg p. It is possible that deg pq < deg p + deg q, for example,
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(cos φ + i sin φ)(cos φ− i sin φ) = 1. However for any integers m1, . . . ,ml > 0
the product cos m1φ cos m2φ . . . cos mlφ is a trigonometric polynomial in φ of
degree m1 + · · ·+ml. Indeed, the equality 2 cos mφ cos m′φ = cos(m+m′)φ+
cos(m−m′)φ implies cos m1φ cos m2φ . . . cos mlφ− 21−l cos(m1 + · · ·+ ml)φ
is a trigonometric polynomial in φ of degree less than m1 + · · ·+ ml.

We claim that for any g ∈ G the function c22[g] is a trigonometric poly-
nomial of degree |g|, where |g| is the length of g. It is easy to see that
c22[a

n](φ) = c22[b
n](φ) = cos nφ for all n ∈ Z. Now suppose g = gm1

1 . . . gml
l ,

where l > 1, mj 6= 0 for 1 ≤ j ≤ l, {g1, g2} = {a, b}, gj = g1 if j is odd and
gj = g2 if j is even. Then

c22[g] =
∑

1≤j1,...,jl−1≤3

c2j1 [g
m1
1 ]cj1j2 [g

m2
2 ] . . . cjl−12[g

ml
l ].

It is easy to see that cks[g
mj

j ] is a trigonometric polynomial of degree at most
|mj|. Therefore each summand in the above sum is a trigonometric polyno-
mial of degree at most |m1| + · · · + |ml| = |g|. Let p = c22[g

m1
1 ] . . . c22[g

ml
l ].

Clearly, p(φ) = cos m1φ . . . cos mlφ, hence deg p = |g|. Consider a set of
indices j1, . . . , jl−1 ∈ {1, 2, 3} such that jk 6= 2 for some k. It is no loss to
assume that js = 2 for 1 ≤ s < k. In the cases gk = a, jk = 3 and gk = b,
jk = 1, we have c2jk

[gmk
k ] = 0. In the cases gk = a, jk = 1 and gk = b,

jk = 3, we have cjkjk+1
[g

mk+1

k+1 ] = 0 or 1 (here jk+1 = 2 if k + 1 = l). In any
case c2j1 [g

m1
1 ]cj1j2 [g

m2
2 ] . . . cjl−12[g

ml
l ] is a trigonometric polynomial of degree

less than |g|. It follows that deg(c22[g]− p) < |g|, hence deg c22[g] = |g|.
Let g ∈ G, g 6= 1. Then |g| ≥ 1. Since c22[g] is a trigonometric polynomial

of degree n = |g|, so is c22[g]− 1. It follows that c22[g](φ)− 1 = e−inφP (eiφ),
where P is a nonzero polynomial of degree at most 2n. Therefore c22[g](φ) =
1 for at most 2n values of φ ∈ [0, 2π). Clearly, Fφ(g) = 1 only if c22[g](φ) = 1.
Hence for all but countably many angles φ ∈ [0, 2π) we have Fφ(g) = 1 only
if g = 1. The latter property implies Fφ is injective.

Lemma 2 Suppose G is a free group with two generators a and b. Then the
subgroup of G generated by elements gk = bkab−k, 1 ≤ k ≤ n, is a free group
with n generators.

Proof. Suppose g = gm1
i1

gm2
i2

. . . gml
il

, where l ≥ 1, 1 ≤ ij ≤ n and mj 6= 0
for 1 ≤ j ≤ l, and ij 6= ij+1 for 1 ≤ j < l. We have to prove that g 6= 1. If
l = 1 then g = bi1am1b−i1 . Otherwise g = bi1am1bi2−i1am2 . . . bil−il−1amlb−il .
Since none of the integers i1, i2 − i1, . . . , il − il−1,−il and m1, . . . ,ml is equal
to zero, it follows that g 6= 1.
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Suppose a group G is generated by n elements g1, . . . , gn of order 2. The
group G is called the free product of n groups of order 2 (we say that g1, . . . , gn

freely generate G) if G = 〈g1, . . . , gn | g2
1 = . . . = g2

n = 1〉 or, equivalently, for
any group H and any elements h1, . . . , hn ∈ H of order 2 there exists a unique
homomorphism f : G → H such that f(gi) = hi, 1 ≤ i ≤ n. A nontrivial
element g ∈ G is represented as gi1gi2 . . . gil , where l ≥ 1, 1 ≤ ij ≤ n for
1 ≤ j ≤ l, and ij 6= ij+1 for 1 ≤ j < l. The group G is freely generated by n
involutions if and only if such a representation is unique for any g 6= 1.

Lemma 3 Suppose G is a group generated by n ≥ 2 elements g1, . . . , gn of
order 2. Then G is freely generated by n involutions if and only if elements
g1g2, g1g3, . . . , g1gn generate a free group with n− 1 generators.

Proof. Let H denote the subgroup of G generated by elements hi = g1gi,
2 ≤ i ≤ n. Consider an element h = hε1

i1
hε2

i2
. . . hεl

il
, where l ≥ 1, 2 ≤ ij ≤ n,

εj = 1 or −1, and εj = εj+1 whenever ij = ij+1. Since hi = g1gi and
h−1

i = gig1 for 2 ≤ i ≤ n, we have h = g′0gi1g
′
1 . . . gilg

′
l, where g′j = g1 or 1,

0 ≤ j ≤ l. Moreover, g′j = g1 whenever εj = εj+1. In particular, h 6= 1 if G
is freely generated by the involutions g1, . . . , gn. It follows that H is a free
group with n− 1 generators if G is freely generated by g1, . . . , gn.

Now suppose H is the free group with free generators h2, . . . , hn. To
prove that G is freely generated by n involutions, it is sufficient to show that
g 6= 1 whenever g = gi1 . . . gil , where l ≥ 1, 1 ≤ ij ≤ n, ij 6= ij+1. Note that
gigj = h−1

i hj for 1 ≤ i, j ≤ n, where by definition h1 = 1. On the other hand,
none of the elements g1, . . . , gn belongs to H as a free group has no elements
of order 2. Hence if l is odd then g /∈ H, in particular, g 6= 1. Consider the
case when l is even. Here g = h−1

i1
hi2 . . . h−1

il−1
hil ∈ H. It is easy to see that

the length of g in H is equal to the number of indices j ∈ {1, . . . , l} such
that ij 6= 1. As this number is positive, g 6= 1.

A vector plane in R3 is uniquely determined by the orthogonal straight
line. Therefore the set of planes in R3 is parametrized by the projective
plane RP 2. Recall that elements of RP 2 are one-dimensional subspaces of
R3, i.e., straight lines passing through the origin. For any straight line γ ∈
RP 2 let R[γ] ∈ O(3) be the matrix of the reflection of R3 in the vector
plane orthogonal to γ. Given γ1, . . . , γn ∈ RP 2, let J [γ1, . . . , γn] denote the
homomorphism of the group Z∗n

2 = 〈a1, . . . , an | a2
1 = . . . = a2

n = 1〉 to O(3)
such that J [γ1, . . . , γn](ai) = R[γi], 1 ≤ i ≤ n.

Theorem 4 There exists a dense Gδ-set Un ⊂ (RP 2)n such that for any
(γ1, . . . , γn) ∈ Un the homomorphism J [γ1, . . . , γn] is injective.
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Proof. The case n = 1 is trivial as J [γ] is always injective. Consider the
case n > 1. Let γ1 denote the x-axis in R3. For any φ ∈ [0, 2π) the matrices

BφAφB
−1
φ , B2

φAφB
−2
φ , . . . , Bn−1

φ AφB
−(n−1)
φ ∈ SO(3) are matrices of rotations

by φ about axes orthogonal to γ1. It follows that there exist straight lines
γ2, . . . , γn ∈ RP 2 such that Bk−1

φ AφB
−(k−1)
φ = R[γ1]R[γk] for 2 ≤ k ≤ n. By

Proposition 1, we can choose φ so that Aφ and Bφ generate a free subgroup of
SO(3) with two generators. Then Lemmas 2 and 3 imply that the subgroup
of O(3) generated by R[γ1], . . . , R[γn] is freely generated by n involutions.
This means J [γ1, . . . , γn] is an injective map.

Given g ∈ Z∗k
2 , let Un(g) denote the set of (γ1, . . . , γn) ∈ (RP 2)n such

that J [γ1, . . . , γn](g) 6= 1. Notice that RP 2 is an analytic manifold. For
any γ ∈ RP 2 the orthogonal reflection of R3 in the vector plane orthogonal
to γ is given by the formula v 7→ v − 2 (v,nγ)

(nγ ,nγ)
nγ, where (·, ·) denotes the

scalar product and nγ is a nonzero vector parallel to γ. The formula shows
that R[γ] is a real analytic matrix-valued function of γ ∈ RP 2. Therefore
J [γ1, . . . , γn](g) is a real analytic matrix-valued function of (γ1, . . . , γn) ∈
(RP 2)n. Since RP 2 is connected, it follows that Un(g) is an open set that is
either dense in (RP 2)n or empty. By the above J [γ1, . . . , γn] is injective for
some γ1, . . . , γn ∈ RP 2. This implies Un(g) is not empty for any g 6= 1. Hence
Un =

⋂
g 6=1 Un(g) is a dense Gδ-set. Obviously, J [γ1, . . . , γn] is injective for

any (γ1, . . . , γn) ∈ Un.

Let Π be a polyhedron in R3. A billiard orbit in Π is a (finite or infinite)
broken line x0x1 . . . such that (i) each xi lies on the boundary of Π, moreover,
xi is an interior point of a face unless it is an endpoint of the broken line,
(ii) the interior of each segment xixi+1 is contained in the interior of Π, and
(iii) the unit vectors xi+1−xi

|xi+1−xi| and xi+2−xi+1

|xi+2−xi+1| are symmetric with respect to

the orthogonal reflection in the face containing xi+1. The latter condition
(the reflection rule) means that a billiard orbit is a trajectory of a point-
mass moving freely within Π subject to elastic rebounds off the faces. One
or both endpoints of a billiard orbit in Π may lie on edges of Π. A billiard
orbit is called singular if this is the case. Any finite nonsingular billiard
orbit can be continued to a singular or infinite one. A finite billiard orbit
x0x1 . . . xn is called periodic if xn = x0 and the infinite periodic broken line
x0x1 . . . xnx1 . . . xnx1 . . . is a billiard orbit.

Suppose that faces of the polyhedron are labelled by elements of a finite
set A. Then each nonsingular billiard orbit x0x1x2 . . . is assigned a code word
w = a1a2 . . ., where ai ∈ A labels the face containing xi.

Suppose Π1 and Π2 are polyhedra in R3. Given ε > 0, we say that a face
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f1 of Π1 is ε-close to a face f2 of Π2 if the distance from any point of f1 to f2

is less than ε and the distance from any point of f2 to f1 is less than ε. Note
that ε-close faces need not have the same number of edges. Further, we say
that the polyhedron Π2 is an ε-perturbation of Π1 if Π2 have the same number
of faces as Π1, and each face of Π2 is ε-close to a face of Π1. Assume ε is
so small that distinct faces of Π1 are not 2ε-close. Then ε-closeness provides
a one-to-one correspondence between faces of Π1 and Π2. In particular, any
labeling of faces of Π1 induces a labeling of faces of Π2. We shall say that
a property of polyhedra can be achieved by an arbitrarily small perturbation
of faces of a polyhedron Π if for any ε > 0 there exists an ε-perturbation of
Π with this property.

Lemma 5 Let Π be a polyhedron in R3 and f1, . . . , fm be faces of Π. Let
γ1, . . . , γm ∈ RP 2 be straight lines such that γi is orthogonal to fi. Then for
any ε > 0 there exists δ > 0 with the following property: given γ̃1, . . . , γ̃m ∈
RP 2 such that the angle between γi and γ̃i is less than δ, there exists an
ε-perturbation Π̃ of Π such that each γ̃i is orthogonal to a face of Π̃.

Let Π be a polyhedron and x0x1 . . . xn be a finite nonsingular billiard
orbit in Π. Given δ > 0, there exists ε > 0 such that any ε-perturbation of
Π admits a nonsingular billiard orbit y0y1 . . . yn such that yi and xi lie on
ε-close faces and |yi−xi| < δ. Assuming that faces of Π are labelled and ε is
small enough, y0y1 . . . yn has the same code word as x0x1 . . . xn. In the case
x0x1 . . . xn is a periodic billiard orbit, we wish to know whether the billiard
orbit y0y1 . . . yn can be chosen periodic too. The following theorem gives a
partial answer to this question.

Theorem 6 Suppose there is a periodic billiard orbit with a code word w in
a polyhedron Π. Then there exists an arbitrarily small perturbation of faces
of Π such that the perturbed polyhedron admits at most one periodic billiard
orbit with the code word w if w has even length, and no periodic billiard orbit
with the code word w if w has odd length.

Proof. Let A be the set whose elements label faces of Π. For any a ∈ A
let fa denote the face with label a and Sa denote the orthogonal reflection of
R3 in the affine plane containing fa. Let w = a1 . . . an. Obviously, ai 6= ai+1

for 1 ≤ i < n, and an 6= a1. Suppose x0x1 . . . xn is a nonsingular billiard
orbit in Π such that x0 ∈ fan and xi ∈ fai

, 1 ≤ i ≤ n. We apply the so-
called unfolding procedure to this orbit. Namely, consider polyhedra Π0 =
Π, Π1, . . . , Πn and affine orthogonal transformations T0 = id, T1, . . . , Tn such
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that Πi = Ti(Π) (1 ≤ i ≤ n) and Πi is symmetric to Πi−1 with respect
to their common face Ti−1(fai

). The polyhedra and the transformations
are uniquely determined. By construction, TiT

−1
i−1 = Ti−1Sai

T−1
i−1. Hence

Ti = Sa1Sa2 . . . Sai
, 1 ≤ i ≤ n. Now let x′

i = Ti(xi), 1 ≤ i ≤ n. Then
x0x

′
1 = x0x1 ⊂ Π and x′

ix
′
i+1 = Ti(xixi+1) ⊂ Πi for 1 ≤ i < n. The reflection

rule implies that segments x0x
′
1, x

′
1x

′
2, . . . , x

′
n−1x

′
n form the single segment

x0x
′
n, which is called the unfolding of the billiard orbit x0x1 . . . xn. Now

suppose xn = x0. Then the vector Tnx0 − x0 is of the same direction as
x1 − x0. It is easy to see that x0x1 . . . xn is a periodic billiard orbit if and
only if the segment Tn(x0x1) = x′

nTn(x1) ⊂ Πn continues x0x
′
n. An equivalent

condition is that Tn(x1)−Tn(x0) = x1−x0, i.e., the vector x1−x0 is invariant
under the linear part L of Tn. In particular, 1 has to be an eigenvalue of L.

Suppose x0x1 . . . xn and y0y1 . . . yn are distinct periodic billiard orbits in
Π with the code word w. Their unfoldings are x0Tn(x0) and y0Tn(y0). Since
the two orbits are distinct, it follows that y0 6= x0. By the above vectors
Tn(x0)− x0 and Tn(y0)− y0 are invariant under L. So is the vector Lv − v,
where v = y0 − x0. Hence (L− 1)2v = 0. Since L is an orthogonal operator,
we obtain Lv = v. Note that v is parallel to the face fan while Tn(x0) − x0

is not. This implies that 1 is a multiple eigenvalue of L.
For any a ∈ A let γa ∈ RP 2 be the straight line orthogonal to the plane

containing the face fa. Then R[γa] is the matrix of the linear part of Sa.
Consequently, M = R[γa1 ]R[γa2 ] . . . R[γan ] is the matrix of the linear part
of Tn. Assume that the involutive matrices R[γa], a ∈ A, freely generate a
subgroup of O(3). Since ai 6= ai+1 and an 6= a1, it follows that M 6= 1 and
M2 6= 1. Hence if n is even then 1 is a simple eigenvalue of the matrix M . If
n is odd then 1 is not an eigenvalue of M .

By Theorem 4 and Lemma 5, there exists an arbitrarily small pertur-
bation of faces of Π such that matrices of the linear parts of orthogonal
reflections in faces of the perturbed polyhedron Π̃ freely generate a subgroup
of O(3). It follows from the above that the polyhedron Π̃ admits at most
one periodic billiard orbit with any fixed code word of even length and no
periodic billiard orbits with code words of odd length.
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