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1 Introduction

LetM be a compact connected oriented surface endowed with a flat metric that has a
finite number of conical singularities. The flat structure on M can be determined by
an atlas of coordinate charts such that all transition functions are (affine) rotations
or translations in R2 and chart domains cover the whole surface M except for the
singularities. Suppose that the atlas can be chosen so that all transition functions are
translations. Then this atlas endows M with a translation structure and M is called
a translation surface. Translation surfaces are closely related to Abelian differentials
on compact Riemann surfaces. If x is a conical singularity of a translation surface
M , then the total cone angle at this point is of the form 2πm, where m is an integer.
m is called the multiplicity of the singular point x.

A translation structure on M endows the surface punctured at its singular points
with a smooth structure, a flat Riemannian metric, and an area element. Moreover,
it allows us to identify the tangent space at any nonsingular point with Euclidean
space R2 so that velocity is an invariant of the geodesic flow. In particular, each
oriented geodesic is assigned a unique direction v ∈ S1 = {x ∈ R2 : |x| = 1}. The
study of the geodesic flow reduces to the study of the family of directional flows Fv,
v ∈ S1, on the surface M .

A geodesic on a translation surface cannot have self-intersections. Therefore a
geodesic joining a nonsingular point to itself is necessarily closed (or periodic). We
regard periodic geodesics as simple closed curves. The flat structure implies that any
periodic geodesic belongs to a family of freely homotopic parallel periodic geodesics
of the same length. The geodesics of the family fill either the whole surface or a
cylindrical subset. We call this subset a cylinder of periodic geodesics (or a periodic
cylinder). A periodic cylinder is bounded by geodesic segments whose endpoints
are singular points. Such segments are called saddle connections. As a default, peri-
odic geodesics are assumed to be unoriented but we shall consider oriented periodic
geodesics and cylinders as well.
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The fundamental properties of periodic geodesics on translation surfaces were
established by Masur.

Theorem 1.1 ([M1], [M2], [M3]) Let M be a translation surface.
(a) There exists a periodic geodesic on M of length at most c

√
a, where a is the

area of M and c > 0 is a constant depending only on the genus of M .
(b) The directions of periodic geodesics on M are dense in S1.
(c) Let N1(M,R) denote the number of periodic cylinders of M of length at most

R > 0. Then there exist 0 < c1(M) < c2(M) <∞ such that

c1(M) ≤ N1(M,R)/R2 ≤ c2(M)

for R sufficiently large.

Theorem 1.1 can be generalized as follows.

Theorem 1.2 ([Vo]) Let M be a translation surface of area a, m ≥ 1 be the sum
of multiplicities of singular points of M , and s be the length of the shortest saddle
connection of M . Then

(a) M has a periodic cylinder of length at most 224m√
a and of area at least a/m;

(b) for almost every x ∈ M directions of periodic geodesics passing through the
point x are dense in S1;

(c) for any R ≥ 224m√
a,

(
(600m)(2m)2m

)−1

a−2s2R2 ≤ N1(M,R) ≤ (400m)(2m)2m

s−2R2.

Two translation surfaces M and M ′ are called isomorphic if there exists an
orientation-preserving homeomorphism f : M → M ′ such that f maps the set of
singular points of M onto the set of singular points of M ′ and f is a translation with
respect to translation structures ofM andM ′. For any integers p, n ≥ 1 let MQ(p, n)
denote the set of equivalence classes of isomorphic translation surfaces of genus p
with n singular points (of arbitrary multiplicity). MQ(p, n) is called the moduli
space of such surfaces. An element of MQ(p, n) is a translation surface considered
up to isomorphism. The moduli space MQ(p, n) is endowed with the structure of
an affine orbifold of dimension 2(2p + n − 1) and with a canonical volume element
(see Section 6). MQ(p, n) need not be connected but the number of its connected
components is finite. By MQ1(p, n) denote the subset of MQ(p, n) corresponding to
translation surfaces of area 1. MQ1(p, n) is a real analytic suborbifold of MQ(p, n)
of codimension 1. The volume element on MQ(p, n) induces a canonical volume
element on MQ1(p, n) such that the volume of MQ1(p, n) is finite (see [V2], [MS]).
Every connected component of MQ1(p, n) is of the form C ∩MQ1(p, n), where C is
a connected component of MQ(p, n).

Suppose P is a property of translation surfaces such that P simultaneously holds
or does not hold for any pair of isomorphic translation surfaces. Let C be a nonempty
open subset of MQ(p, n) or MQ1(p, n). We say that the property P is generic for
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translation surfaces in C or that P holds for a generic M ∈ C if P holds for almost
all M ∈ C with respect to the volume element on MQ(p, n) (resp. MQ1(p, n)).

The simplest property of periodic geodesics on generic translation surfaces that
is not enjoyed by all translation surfaces concerns regularity of periodic cylinders. A
periodic cylinder is called regular if it is bounded by saddle connections of the same
length as geodesics in the cylinder.

Proposition 1.3 ([EM]) Generic translation surfaces admit only regular periodic
cylinders.

Two nonintersecting periodic geodesics are called homologous if they break the
translation surface into two components. Homologous geodesics are parallel and of
the same length. Two periodic geodesics in the same cylinder are obviously homolo-
gous but the converse is not true. As shown by Eskin, Masur, and Zorich [EMZ], for
any positive integer k a generic translation surface of sufficiently high genus admits
k distinct cylinders of homologous periodic geodesics.

Proposition 1.4 (a) For a generic translation surface any two nonhomologous pe-
riodic geodesics are of different length and direction.

(b) For a generic translation surface M ∈ MQ(p, n), (p, n) 6= (1, 1), all periodic
cylinders are of different area.

The group SL(2,R) acts on the set of translation surfaces of genus p with n
singular points by postcomposition of the chart maps with linear transformations
from SL(2,R). This action descends to an action on the moduli space MQ(p, n),
which is affine and leaves invariant the subspace MQ1(p, n). The SL(2,R) action
on MQ1(p, n) is volume preserving and ergodic on each connected component of
MQ1(p, n) (see [V1]). This fact is basic in establishing genericity of many properties
of translation surfaces, in particular, the properties stated below.

For any translation surface M and any R > 0 let N1(M,R) denote the number
of periodic cylinders of M of length at most R. By N2(M,R) denote the sum of
areas of these cylinders. Further, for any x ∈M let N3(M,x,R) denote the number
of periodic geodesics on M of length at most R that pass through the point x. For
any σ ≥ 0 let N4(M,σ,R) denote the number of periodic cylinders of M of length
at most R and of area greater than σ.

Let C be a connected component of the space MQ1(p, n).

Theorem 1.5 ([EM]) For a generic translation surface M ∈ C,

lim
R→∞

N1(M,R)/R2 = c1(C),

where c1(C) > 0 depends only on the component C.

Theorem 1.5 was proved by Eskin and Masur [EM] who sharpened results of
Veech [V3]. The constants c1(C) were found by Eskin, Masur, and Zorich [EMZ]. It
turns out that explicit evaluation of these constants involves a lot of calculation.
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Theorem 1.6 (a) For a generic translation surface M ∈ C,

lim
R→∞

N2(M,R)/R2 = c2(C),

where c2(C) > 0 depends only on the component C.
(b) c2(C) = c1(C)/mC, where mC = 2p − 2 + n is the sum of multiplicities of

singular points for translation surfaces in C.

Theorem 1.7 For a generic translation surface M ∈ C,

lim
R→∞

N3(M,x,R)/R2 = c2(C)

for almost every x ∈M .

The following theorem answers, in particular, Question 13.4 of the paper [V3].

Theorem 1.8 For a generic translation surface M ∈ C,

lim
R→∞

N4(M,σ,R)/R2 = (1 − σ)mC−1c1(C)

for all σ ∈ [0, 1).

For every translation surface M of area 1 we define three families αM,R, δM,R,
and DM,R of measures depending on the parameter R > 0. αM,R is a measure on
[0, 1]; for any K ⊂ [0, 1] let αM,R(K) be the number of periodic cylinders of M of
length at most R and of area in the set K. δM,R is a measure on the unit circle S1;
for any U ⊂ S1 let δM,R(U) be the number of oriented periodic cylinders of length
at most R with directions in the set U . DM,R is a measure on S1 × [0, 1]; for any
U ⊂ S1 × [0, 1] let DM,R(U) be the number of oriented periodic cylinders of length
at most R with direction v and area a such that (v, a) ∈ U . Let RM be the length of
the shortest periodic geodesic on M . For any R ≥ RM the measures αM,R, δM,R, and
DM,R are nonzero so we define probability measures α̃M,R = (αM,R([0, 1]))−1αM,R,

δ̃M,R = (δM,R(S1))−1δM,R, and D̃M,R = (DM,R(S1 × [0, 1]))−1DM,R. The measures
α̃M,R describe the distribution of areas of periodic cylinders on M . The measures

δ̃M,R describe the distribution of their directions. The measures D̃M,R describe the
joint distribution of directions and areas.

For any integer m ≥ 1 let λm denote a unique Borel measure on [0, 1] such that
λm([σ, 1]) = (1 − σ)m−1 for all σ ∈ [0, 1). Let m1 denote Lebesgue measure on S1

normalized so that m1(S
1) = 1.

Theorem 1.9 For a generic translation surface M ∈ C we have the following weak
convergence of measures:

lim
R→∞

α̃M,R = λmC
,

lim
R→∞

δ̃M,R = m1,

lim
R→∞

D̃M,R = m1 × λmC
.
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Theorem 1.9 means that for a generic translation surface M ∈ C the directions of
periodic geodesics on M are uniformly distributed in S1 while the areas of periodic
cylinders are distributed according to the measure λmC

. Moreover, the distributions
of directions and areas of periodic cylinders are independent. In view of Theorems
1.5 and 1.6(a), the ratio c2(C)/c1(C) may be regarded as the mean area of periodic
cylinders on a generic translation surface M ∈ C. Indeed, c2(C)/c1(C) = 1/mC is the
expectation of a random variable taking values in [0, 1] with probabilities given by
the measure λmC

.
For any translation surface M and any x ∈ M we define a family δM,x,R of

measures on S1 depending on R > 0. For any U ∈ S1 let δM,x,R(U) be the number
of oriented periodic geodesics on M of length at most R passing through the point
x in directions from U . If the measure δM,x,R is nonzero then we define a probability
measure δ̃M,x,R = (δM,x,R(S1))−1δM,x,R.

Theorem 1.10 For a generic translation surface M ∈ C the weak convergence of
measures

lim
R→∞

δ̃M,x,R = m1

takes place for almost all x ∈M .

Thus the directions of periodic geodesics passing through a generic point on a
generic translation surface are uniformly distributed in S1.

The paper is organized as follows. In Section 2 we review Veech’s theory of Siegel
measures. In Section 3 this theory is applied to a general counting problem related to
the growth of the number of periodic geodesics. The tools to treat limit distributions
are developed in Section 4. Section 5 contains preliminaries on translation surfaces
and Delaunay partitions. In Section 6 we consider moduli spaces of translation sur-
faces. Section 7 is devoted to proofs of main results of the paper. Some proofs rely on
estimates of volumes of certain subsets in the moduli space of translation surfaces.
These estimates are obtained in Section 8.

Acknowledgements. This paper was inspired by the papers of Veech [V3], Eskin
and Masur [EM], Masur and Smillie [MS], and Eskin, Masur, and Zorich [EMZ].
I am grateful to all these authors for the inspiration. I would like to thank Anton
Zorich for several helpful discussions.

Part of the paper was written while the author was visiting the Max Planck
Institute of Mathematics in Bonn, whose hospitality is gratefully acknowledged.

2 Siegel measures

Let M denote the set of locally finite Borel measures on R2. Given a bounded,
compactly supported Borel function ψ on R2, set

ψ̂(ν) =

∫

R2

ψ(x) dν(x)
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for any ν ∈ M. Let Cc(R
2) denote the space of continuous, compactly supported

functions on R2. Endow M with the Cc(R
2) weak-∗ topology. By definition, this is

the smallest topology such that ψ̂ is continuous on M when ψ ∈ Cc(R
2).

For any R > 0 let B(R) denote the disk of radius R in R2 centered at the origin.
For any ν ∈ M and any R > 0 set Nν(R) = ν(B(R)). The function Nν is called the
growth function of the measure ν. By M2 denote the set of measures ν ∈ M such
that M(ν) <∞, where

M(ν) = sup
R>0

Nν(R)

R2
.

As a topological space, M2 is a countable union of metrizable compacta. Namely, for
any c > 0 the subspace M2(c) = {ν ∈ M2 | M(ν) ≤ c} is compact and metrizable.
A measure ν ∈ M is called even if ν(U) = ν(−U) for any Borel set U ⊂ R2. The set
M

e of all even measures is a closed subset of M. By m denote Lebesgue measure on
R2. Clearly, m ∈ M2(π) ⊂ M2 and m ∈ M

e.
Let g ∈ SL(2,R). We regard g as a linear transformation of R2. For any ν ∈

M define a measure gν by gν(U) = ν(g−1(U)), U ⊂ R2 a Borel set. The map
SL(2,R) × M ∋ (g, ν) 7→ gν defines a continuous action of the group SL(2,R) on
M. The sets M2 and M

e are invariant under this action.
For any R > 0 define a transformation TR : M → M by TRν(U) = R−2ν(RU),

ν ∈ M, U ⊂ R2 a Borel set. The family {TR}R>0 defines a continuous action of
the group R+ on M. The sets M2, M

e, and each of the subsets M2(c), c > 0, are
invariant under this action. Besides, the action of R+ on M commutes with the
action of SL(2,R).

Denote by P(M2) the set of Borel probability measures on M2. An element
µ ∈ P(M2) is called a Siegel measure if the SL(2,R) action on M2 leaves µ invariant
and is ergodic with respect to µ. Siegel measures were introduced and studied by
Veech [V3].

Theorem 2.1 ([V3]) Assume µ ∈ P(M2) is a Siegel measure. Then there exists
c(µ) ≥ 0 such that for any compactly supported bounded Borel function ψ on R2, the
function ψ̂ belongs to L1(M2, µ) and

∫

M2

ψ̂(ν) dµ(ν) = c(µ)

∫

R2

ψ(x) dm(x).

The number c(µ) is called the Siegel-Veech constant of the measure µ.

Theorem 2.2 ([V3]) Assume µ ∈ P(M2) is a Siegel measure. Then

lim
R→∞

∫

M2

∣∣∣R−2Nν(R) − c(µ)π
∣∣∣ dµ(ν) = 0.

As a consequence, there exists a sequence Rn → ∞ such that for µ-a.e. ν ∈ M2,

lim
n→∞

Nν(Rn)

R2
n

= c(µ)π.
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Let M
e
2 = M2∩M

e. Denote by P(Me
2) the set of measures µ ∈ P(M2) supported

on M
e
2.

Theorem 2.3 ([V3]) Assume µ ∈ P(Me
2) is a Siegel measure. Then there exists a

sequence Rn → ∞ such that for µ-a.e. ν ∈ M
e
2,

lim
n→∞

TRnν = c(µ)m,

where convergence is in the Cc(R
2) weak-∗ topology.

Theorem 2.3 is derived from Theorem 2.2 by applying the following criterion.

Theorem 2.4 ([V3]) Let {να | a ∈ A} be a net of even, locally finite Borel mea-
sures on R2. Assume there exist c < ∞ and a dense set F ⊂ SL(2,R) × R+ such
that for any (g, t) ∈ F ,

lim
α∈A

να(tgB(1)) = πt2c.

Then

lim
α∈A

∫

R2

ψ(x) dνα(x) = c

∫

R2

ψ(x) dm(x)

for any ψ ∈ Cc(R
2), i.e., lim

α∈A
να = cm in M.

Let µ ∈ P(M2) be a Siegel measure. Set L1+(M2, µ) =
⋃

ǫ>0 L
1+ǫ(M2, µ). The

measure µ is called regular if ψ̂ ∈ L1+(M2, µ) for any ψ ∈ Cc(R
2).

Theorem 2.5 If µ ∈ P(M2) is a regular Siegel measure, then for µ-a.e. ν ∈ M2,

lim
R→∞

Nν(R)

R2
= c(µ)π.

A closely related result, which is reproduced below as Part II of Theorem 3.2,
was proved by Eskin and Masur [EM]. The proof of Theorem 2.5 is almost the same
and will be omitted.

Theorem 2.6 If µ ∈ P(Me
2) is a regular Siegel measure, then for µ-a.e. ν ∈ M

e
2,

lim
R→∞

TRν = c(µ)m.

Proof. Let c(µ) be the Siegel-Veech constant of the measure µ. By Theorem 2.5,
there exists a Borel set U ⊂ M

e
2 such that µ(U) = 1 and for all ν ∈ U ,

lim
R→∞

R−2Nν(R) = c(µ)π.

Suppose G is a countable dense subset of the group SL(2,R). Set U0 =
⋂

g∈G gU .
Clearly, U0 is a Borel subset of M

e
2 and µ(U0) = 1. Take a measure ν ∈ U0. For any

g ∈ G and any t > 0 we have

TRν(tgB(1)) = R−2ν(gB(Rt)) = R−2(g−1ν)(B(Rt)) = R−2Ng−1ν(Rt).

Since g−1ν ∈ U , it follows that limR→∞ TRν(tgB(1)) = t2c(µ)π. By Theorem 2.4,
limR→∞ TRν = c(µ)m in M.
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3 Counting problem

Let V denote a sequence v1, v2, . . . of vectors in R2 equipped with a sequence
w1, w2, . . . of positive reals. The number wk is called the weight of the vector vk.
It is assumed that the sequence of vectors tends to infinity or is finite (possibly
empty). By V denote the set of all such sequences of vectors with weights. Two
elements V1, V2 ∈ V are considered to be equal if one of them can be obtained
from the other by rearranging its vectors along with the corresponding rearrange-
ment of weights. The group SL(2,R) acts on the set V by the natural action on
vectors and the trivial action on weights. To each V ∈ V we assign a linear func-
tional Φ[V ] on the space of compactly supported functions on R2; the functional is
defined by the relation Φ[V ](ψ) =

∑∞
k=1wkψ(vk). Furthermore, for any R > 0 set

NV (R) = Φ[V ](χB(R)) =
∑

k:|vk|≤R wk. The function NV is called the growth function

of V . If all weights of V are equal to 1, then NV (R) counts the number of vectors
of V in the disk B(R).

Given V ∈ V, let v1, v2, . . . be the sequence of vectors of V and w1, w2, . . . be
the sequence of weights. For any Borel set U ⊂ R2 let νV (U) =

∑
k:vk∈U wk. It is

easy to see that νV is a Borel measure on R2. Since the sequence v1, v2, . . . either
tends to infinity or is finite, the measure νV is locally finite, i.e., νV ∈ M. The
growth function of V coincides with the growth function of the measure νV . For any
compactly supported Borel function ψ on R2,

Φ[V ](ψ) =

∫

R2

ψ(x) dνV (x).

Let M be a locally compact metric space endowed with a finite nonzero Borel
measure µ. Suppose the group SL(2,R) acts on the space M by homeomorphisms.
We assume that the measure µ is invariant under this action and the action is
ergodic, that is, any measurable subset of M invariant under the action is of zero
or full measure. In what follows we consider maps V : M → V satisfying all or at
least some of the following conditions:

(0) for any ψ ∈ Cc(R
2) the function M ∋ ω 7→ Φ[V (ω)](ψ) is Borel;

(A) the map V intertwines the actions of the group SL(2,R) on the spaces M and
V , that is, V (gω) = gV (ω) for any g ∈ SL(2,R) and any ω ∈ M;

(B) for any ω ∈ M there exists c(ω) < ∞ such that NV (ω)(R) ≤ c(ω)R2 for all
R > 0;

(B′) for any compact subset K ⊂ M there exists c(K) <∞ such that NV (ω)(R) ≤
c(ω)R2 for all ω ∈ K and R > 0;

(C) there exists R0 > 0 such that the function ω 7→ NV (ω)(R0) belongs to the space
L1+(M, µ) =

⋃
ǫ>0 L

1+ǫ(M, µ);

(C′) for any R > 0 the function ω 7→ NV (ω)(R) belongs to L1+(M, µ);
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(C′′) for any ψ ∈ Cc(R
2) the function ω 7→ Φ[V (ω)](ψ) belongs to L1+(M, µ);

(E) V (ω) = −V (ω) for any ω ∈ M.

Note that conditions (C), (C′), and (C′′) depend on the measure µ.

Lemma 3.1 Suppose a map V : M → V satisfies condition (0). Then conditions
(A) and (C) imply condition (C ′), while conditions (C ′) and (C ′′) are equivalent.

Proof. Given a bounded, compactly supported Borel function ψ on R2, set ψ̃(ω) =
Φ[V (ω)](ψ) for any ω ∈ M. For any R > 0 there exists a sequence ψ1, ψ2, . . . of
functions in Cc(R

2) such that ψ1 ≥ ψ2 ≥ . . . and ψn → χB(R) pointwise as n → ∞.

It follows that ψ̃1 ≥ ψ̃2 ≥ . . . and ψ̃n → χ̃B(R) pointwise as n → ∞. Condition (0)

implies ψ̃1, ψ̃2, . . . are Borel functions on M. Then χ̃B(R) is a Borel function as well.
Suppose conditions (A) and (C) hold for the map V . Condition (C) means

that χ̃B(R0) ∈ L1+(M, µ) for some R0 > 0. Condition (A) implies χ̃gB(R0)(ω) =
χ̃B(R0)(g

−1ω) for all g ∈ SL(2,R) and ω ∈ M. It follows that χ̃gB(R0) ∈ L1+(M, µ)
for any g ∈ SL(2,R). Since SL(2,R) acts transitively on R2 \ {(0, 0)}, for any
x ∈ R2 there exist a neighborhood Ux of x and an operator gx ∈ SL(2,R) such that
gxUx ⊂ B(R0). Given R > 0, the disk B(R) is covered by finitely many neighbor-
hoods Ux1 , Ux2 , . . . , Uxk

. Then B(R) ⊂ ⋃k
i=1 hiB(R0), where hi = g−1

xi
. It follows that

χ̃B(R) ≤
∑k

i=1 χ̃hiB(R0). By the above the functions χ̃h1B(R0), . . . , χ̃hkB(R0) belongs to
L1+(M, µ). Since χ̃B(R) is a nonnegative Borel function, it belongs to L1+(M, µ) as
well. Thus, χ̃B(R) ∈ L1+(M, µ) for any R > 0, i.e., condition (C′) holds.

For any ψ ∈ Cc(R
2) there exist c, R > 0 such that |ψ| ≤ cχB(R). Then |ψ̃| ≤

cχ̃B(R). It follows that ψ̃ ∈ L1+(M, µ) whenever χ̃B(R) ∈ L1+(M, µ). Thus condition
(C′) implies condition (C′′). On the other hand, for any R > 0 there exists ψ ∈
Cc(R

2) such that χB(R) ≤ ψ. Then 0 ≤ χ̃B(R) ≤ ψ̃. By the above χ̃B(R) is a Borel

function, hence χ̃B(R) ∈ L1+(M, µ) whenever ψ̃ ∈ L1+(M, µ). Thus condition (C′′)
implies condition (C′).

Theorem 3.2 Let V : M → V be a map satisfying condition (0).
I. Suppose the map V satisfies conditions (A) and (B). Then there exists cV,µ ≥ 0

such that for any compactly supported bounded Borel function ψ on R2, the function
ω 7→ Φ[V (ω)](ψ) belongs to L1(M, µ) and

1

µ(M)

∫

M

Φ[V (ω)](ψ) dµ(ω) = cV,µ

∫

R2

ψ(x) dm(x).

II. If V satisfies conditions (A), (B), and (C), then for µ-a.e. ω ∈ M,

lim
R→∞

NV (ω)(R)

R2
= πcV,µ.

III. If V satisfies conditions (A), (B), (C), and (E), then for µ-a.e. ω ∈ M,

lim
R→∞

∫

R2

1

R2
ψ

( x
R

)
dνV (ω)(x) = cV,µ

∫

R2

ψ(x) dm(x)
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for each compactly supported, Riemann integrable function ψ : R2 → R. In particu-
lar, lim

R→∞
TRνV (ω) = cV,µm in M for µ-a.e. ω ∈ M.

The constant cV,µ is called the Siegel-Veech constant of the pair (V, µ).
Part I of Theorem 3.2 was proved by Veech [V3] in some particular cases. The

proof in the general case requires no changes. Parts I and II was proved by Eskin
and Masur [EM] assuming conditions (A), (B′), (C), and, implicitly, condition (0)
hold. In fact, the weaker condition (B) was used in the proof instead of condition
(B′). Although condition (C) is not necessary for Part I to be true, it simplifies the
proof significantly. Besides, condition (C) allows one to prove Part I without using
ergodicity of the SL(2,R) action on M.

Proof of Theorem 3.2. We shall derive Parts I–III of the theorem from Theorems
2.1, 2.5, and 2.6, respectively.

Define a map F : M → M by F (ω) = νV (ω), ω ∈ M. It is easy to observe that F
is a Borel map if and only if condition (0) holds for the map V . Further, F (M) ⊂ M2

if and only if V satisfies condition (B). If condition (A) holds, then F (gω) = gF (ω)
for all g ∈ SL(2,R) and ω ∈ M. If condition (E) holds, then F (M) ⊂ M

e.
Suppose the map V satisfies conditions (0), (A), and (B). For any Borel subset

U ⊂ M2 let µV (U) = µ(F−1(U))/µ(M). Condition (0) implies µV is a well-defined
finite Borel measure on M2. Condition (B) implies µV is a probability measure. Since
µ is invariant under the SL(2,R) action on M, condition (A) implies µV is invariant
under the SL(2,R) action on M2. Ergodicity of the action of SL(2,R) on M with
respect to µ implies ergodicity of the action on M2 with respect to µV . Thus, µV

is a Siegel measure. By Theorem 2.1, for any compactly supported bounded Borel
function ψ : R2 → R the function ψ̂ belongs to L1(M2, µV ) and

∫

M2

ψ̂(ν) dµV (ν) = cV,µ

∫

R2

ψ(x) dm(x),

where cV,µ is the Siegel-Veech constant of the measure µV . Then ψ̂ ◦ F ∈ L1(M, µ)
and

1

µ(M)

∫

M

ψ̂(F (ω)) dµ(ω) =

∫

M2

ψ̂(ν) dµV (ν).

As ψ̂(F (ω)) = Φ[V (ω)](ψ) for any ω ∈ M, Part I of the theorem follows.
Now suppose V satisfies conditions (0), (A), (B), and (C). By Lemma 3.1, con-

dition (C′′) also holds for V . Condition (C′′) means that ψ̂ ◦F ∈ L1+(M, µ) for any
ψ ∈ Cc(R

2). It follows that ψ̂ ∈ L1+(M2, µV ) for any ψ ∈ Cc(R
2). Therefore µV is a

regular Siegel measure. By Theorem 2.5,

lim
R→∞

R−2Nν(R) = πcV,µ

for µV -a.e. ν ∈ M2, or, equivalently,

lim
R→∞

R−2NF (ω)(R) = πcV,µ
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for µ-a.e. ω ∈ M. As for any ω ∈ M the growth function NF (ω) of the measure
F (ω) = νV (ω) coincides with the growth function NV (ω), Part II of the theorem
follows.

Now suppose V satisfies conditions (0), (A), (B), (C), and (E). By the above µV

is a regular Siegel measure. Condition (E) implies µV ∈ P(Me
2). By Theorem 2.6,

lim
R→∞

TRν = cV,µm

for µV -a.e. ν ∈ M
e
2. It follows that

lim
R→∞

TRνV (ω) = cV,µm

for ω ∈ U , where U ⊂ M is a Borel set such that µ(U) = µ(M). Given any
compactly supported, Riemann integrable function ψ : R2 → R, there exist two
sequences ψ+

1 , ψ
+
2 , . . . and ψ−

1 , ψ
−
2 , . . . of functions in Cc(R

2) such that ψ−
n ≤ ψ ≤ ψ+

n

and
∫

(ψ+
n − ψ−

n ) dm < 1/n for n = 1, 2, . . .. Obviously,
∫

R2

R−2ψ−
n (x/R) dνV (ω) ≤

∫

R2

R−2ψ(x/R) dνV (ω) ≤
∫

R2

R−2ψ+
n (x/R) dνV (ω)

for any ω ∈ M, and

lim
n→∞

∫

R2

ψ+
n dm = lim

n→∞

∫

R2

ψ−
n dm =

∫

R2

ψ dm.

If ω ∈ U , then ∫

R2

R−2ψ+
n (x/R) dνV (ω) = cV,µ

∫

R2

ψ+
n dm,

∫

R2

R−2ψ−
n (x/R) dνV (ω) = cV,µ

∫

R2

ψ−
n dm

for n = 1, 2, . . .. It follows that
∫

R2

R−2ψ(x/R) dνV (ω) = cV,µ

∫

R2

ψ dm

for any ω ∈ U . Part III of the theorem is proved.

Proposition 3.3 Let V : M → V be a map satisfying conditions (0), (A), and (B).
Let cV,µ denote the Siegel-Veech constant of the pair (V, µ). Then cV,µ = 0 if and
only if the sequence V (ω) is empty for µ-a.e. ω ∈ M.

Proof. By Part I of Theorem 3.2,

1

µ(M)

∫

M

Φ[V (ω)](χB(R)) dµ(ω) = πcV,µR
2

for any R > 0. Observe that Φ[V (ω)](χB(R)) ≥ 0, and Φ[V (ω)](χB(R)) = 0 if and
only if the sequence V (ω) contains no vectors of length at most R. Clearly, if V (ω)
is empty for µ-a.e. ω ∈ M, then cV,µ = 0. Conversely, if cV,µ = 0, then for any
R > 0 we have Φ[V (ω)](χB(R)) = 0 for µ-a.e. ω ∈ M. Hence there exists a Borel set
U ⊂ M such that µ(U) = µ(M) and Φ[V (ω)](χB(1)) = Φ[V (ω)](χB(2)) = . . . = 0
for ω ∈ U . Then for any ω ∈ U the sequence V (ω) is empty.

11



4 Limit distributions

Denote by V1 the subset of V consisting of sequences with all weights equal to 1.
For any K ⊂ R+ = (0,∞) define a map WK : V → V1 as follows. Given V ∈ V, the
sequence WKV is obtained from V by removing all vectors with weights outside K
and then changing weights of the remaining vectors to 1.

Let V ∈ V, v1, v2, . . . be the sequence of vectors of V , and w1, w2, . . . be the se-
quence of weights. For any compactly supported function ψ on R2 and any function
f on R+ set Ψ[V ](f, ψ) =

∑
k≥1 f(wk)ψ(vk). Clearly, Φ[V ](ψ) = Ψ[V ](id, ψ) and

Φ[WKV ](ψ) = Ψ[V ](χK , ψ) for any K ⊂ R+. By Cc(R
+) denote the space of con-

tinuous, compactly supported functions on R+. Note that any function f ∈ Cc(R
+)

vanishes in a neighborhood of 0. Ψ[V ] is a bilinear functional on Cc(R
+) × Cc(R

2).
Furthermore, we associate to V three families αV,R, δV,R, and DV,R of measures

depending on the parameter R > 0. αV,R is a measure on R+; for any K ⊂ R+

let αV,R(K) be the number of indices k such that |vk| ≤ R and wk ∈ K. δV,R is a
measure on the unit circle S1 = {v ∈ R2 : |v| = 1}; for any U ⊂ S1 let δV,R(U) be
the number of indices k such that 0 < |vk| ≤ R and vk/|vk| ∈ U . Finally, DV,R is a
measure on S1 × R+; for any U ⊂ S1 × R+ let DV,R(U) be the number of indices k
such that 0 < |vk| ≤ R and (vk/|vk|, wk) ∈ U . The measures αV,R, R > 0, describe
the distribution of weights of vectors in V . The measures δV,R, R > 0, describe
the distribution of their directions. The measures DV,R, R > 0, describe the joint
distribution of directions and weights.

Suppose V contains nonzero vectors and denote by R0 the length of the short-
est nonzero vector in V . For any R ≥ R0 the measures αV,R, δV,R, and DV,R are
nonzero so we can define probability measures α̃V,R = (αV,R(R+))−1αV,R, δ̃V,R =

(δV,R(S1))−1δV,R, and D̃V,R = (DV,R(S1 × R+))−1DV,R.
Now let V be a map of the space M introduced in Section 3 to V . We add two

more conditions to the list started in Section 3:

(0′) for any a > 0 the map M ∋ ω 7→ W(a,∞)V (ω) satisfies condition (0);

(0′′) for any f ∈ Cc(R
+) and ψ ∈ Cc(R

2) the function M ∋ ω 7→ Ψ[V (ω)](f, ψ) is
Borel.

Lemma 4.1 Suppose a map V : M → V satisfies condition (0 ′). Then for any
Borel set K ⊂ R+ the map WKV satisfies condition (0).

Proof. Let K denote the set of subsets K ⊂ R+ such that the map WKV satisfies
condition (0). We shall verify the following properties of K:

(i) if A,B ∈ K and A ∩B = ∅, then A ∪B ∈ K;

(ii) if A,B ∈ K and B ⊂ A, then A \B ∈ K;

(iii) if A1, A2, . . . ∈ K and lim
n→∞

An exists, then lim
n→∞

An ∈ K.
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Let A,B ⊂ R+. If A ∩ B = ∅, then Φ[WA∪BV (ω)] = Φ[WAV (ω)] + Φ[WBV (ω)] for
all ω ∈ M. This implies property (i). If B ⊂ A, then Φ[WA\BV (ω)] = Φ[WAV (ω)]−
Φ[WBV (ω)] for all ω ∈ M. This implies property (ii). Now suppose A1, A2, . . . are
subsets of R+ such that the set A = limn→∞An exists. Then χA(t) = limn→∞ χAn(t)
for all t > 0. It follows that Φ[WAV (ω)](ψ) = limn→∞ Φ[WAnV (ω)](ψ) for any
ψ ∈ Cc(R

2) and ω ∈ M. This implies property (iii).
Condition (0′) means that (a,∞) ∈ K for any a > 0. Property (iii) implies

R+ =
⋃∞

n=1(n
−1,∞) ∈ K and ∅ =

⋂∞
n=1(n,∞) ∈ K. For any a, b, 0 ≤ a < b, we have

(a, b] = (a,∞) \ (b,∞) ∈ K. Further, (a, b) =
⋃∞

n=1(a, b− n−1] ∈ K. Since any open
subset of R+ is a disjoint union of intervals, properties (i) and (iii) imply K contains
all open subsets of R+. Then it follows from the properties (i), (ii), and (iii) that K
contains all Borel subsets of R+.

Lemma 4.2 Conditions (0 ′) and (0 ′′) are equivalent. Condition (0 ′′) implies con-
dition (0).

Proof. Let F denote the set of functions f on R+ such that the function M ∋
ω 7→ Ψ[V (ω)](f, ψ) is Borel for any ψ ∈ Cc(R

2). F have the following properties:

(i) if f1, f2 ∈ F , then a1f1 + a2f2 ∈ F for any a1, a2 ∈ R;

(ii) if f1, f2, . . . ∈ F and f = lim
n→∞

fn pointwise, then f ∈ F .

The first property follows from the fact that Ψ[V (ω)](f, ψ) depends linearly on f .
To verify the second property observe that Ψ[V (ω)](f, ψ) = limn→∞ Ψ[V (ω)](fn, ψ)
for any ψ ∈ Cc(R

2) and ω ∈ M if f(t) = limn→∞ fn(t) for all t > 0.
Suppose the map V satisfies condition (0′). Then Lemma 4.1 implies χK ∈ F

for all Borel sets K ⊂ R+. Given f ∈ Cc(R
+), for any ǫ > 0 there exist Borel sets

K1, . . . , Kn and constants a1, . . . , an such that sup |f−(a1χK1 + · · ·+anχKn)| < ǫ. It
follows from properties (i) and (ii) that f ∈ F . Thus Cc(R

+) ⊂ F , i.e., condition (0′′)
holds. Conversely, if the map V satisfies condition (0′′), that is, Cc(R

+) ⊂ F , then
it easily follows from property (ii) that χ(a,∞) ∈ F for any a > 0 and id(0,∞) ∈ F .
This means that conditions (0′) and (0) hold for V .

Proposition 4.3 Let a map V : M → V satisfy conditions (0 ′), (A), and (B).
Then (a) for any Borel set K ⊂ R+ the map WKV satisfies conditions (0) and (A);

(b) for any K ⊂ (ǫ,∞), ǫ > 0, the map WKV satisfies condition (B);
(c) there exists a unique Borel measure λV,µ on R+ with the following property:

for any Borel set K ⊂ R+ such that WKV satisfies conditions (0), (A), and (B) the
Siegel-Veech constant of the pair (WKV, µ) is equal to λV,µ(K);

(d) if cV,µ denotes the Siegel-Veech constant of the pair (V, µ), then

cV,µ =

∫ ∞

0

t dλV,µ(t);

(e) if condition (B) holds for the map W(0,∞)V , then the measure λV,µ is finite
and condition (B) holds for WKV for any K ⊂ R+.

13



The measure λV,µ is called the Siegel-Veech measure of the pair (V, µ).

Proof of Proposition 4.3. By Lemma 4.1, the map WKV satisfies condition
(0) for any Borel set K ⊂ R+. For any K ⊂ R+ condition (A) holds for WKV
since the SL(2,R) action on V does not affect weights. If K ⊂ (ǫ,∞), ǫ > 0, then
NWKV (ω)(R) ≤ ǫ−1NV (ω)(R) for all ω ∈ M and R > 0, hence condition (B) holds
for WKV . If condition (B) holds for the map W(0,∞)V , then this condition holds
for WKV for any K ⊂ R+ since NWKV (ω)(R) ≤ NW(0,∞)V (ω)(R) for all ω ∈ M and
R > 0.

Let K ⊂ R+ be a Borel set. By the above for any ψ ∈ Cc(R
2) the function

M ∋ ω 7→ Φ[WKV (ω)](ψ) is Borel. Then it follows that for any R > 0 the function
ω 7→ Φ[WKV (ω)](χB(R)) = NWKV (ω)(R) is Borel (cf. the proof of Lemma 3.1). Set

λV,µ(K) =
1

π · µ(M)

∫

M

NWKV (ω)(1) dµ(ω).

Obviously, 0 ≤ λV,µ(K) ≤ ∞. Suppose K1, K2, . . . are disjoint Borel subsets of R+

and denote K =
⋃∞

n=1Kn. Then NWKV (ω)(1) =
∑∞

n=1NWKnV (ω)(1) for any ω ∈ M.
It follows that λV,µ(K) =

∑∞
n=1 λV,µ(Kn). Thus λV,µ is a measure. If the map WKV

satisfies conditions (0), (A), and (B) for some Borel set K ⊂ R+, then the Siegel-
Veech constant of (WKV, µ) is equal to λV,µ(K) due to Part I of Theorem 3.2. If
condition (B) holds for the map W(0,∞)V , then λV,µ(R+) is the Siegel-Veech constant
of (W(0,∞)V, µ), in particular, λV,µ(R+) <∞.

Suppose λ̃ is a Borel measure on R+ having the property required in the state-
ment (c). Take any Borel set K ⊂ R+. For each ǫ > 0 let Kǫ = K ∩ (ǫ,∞).
By the above conditions (0), (A), and (B) hold for the map WKǫV , hence λ̃(Kǫ)
is the Siegel-Veech constant of (WKǫV, µ), in particular, λ̃(Kǫ) = λV,µ(Kǫ). Then
λ̃(K) = limǫ→0 λ̃(Kǫ) = limǫ→0 λV,µ(Kǫ) = λV,µ(K). Thus λ̃ = λV,µ.

Let f1, f2, . . . be the functions on R+ such that fn(t) = 2−nk for 2−nk < t ≤
2−n(k + 1), k = 0, 1, . . .. Then 0 ≤ f1 ≤ f2 ≤ . . . and limn→∞ fn(t) = t for all t > 0.
It follows that

lim
n→∞

∫ ∞

0

fn(t) dλV,µ(t) =

∫ ∞

0

t dλV,µ(t),

lim
n→∞

∫

M

Ψ[V (ω)](fn, χB(1)) dµ(ω) =

∫

M

NV (ω)(1) dµ(ω).

For any integer n ≥ 1 we have

∫

M

Ψ[V (ω)](fn, χB(1)) dµ(ω) =
∞∑

k=1

2−nk

∫

M

NW(2−nk,2−n(k+1)]V (ω)(1) dµ(ω) =

π · µ(M)
∞∑

k=1

2−nk · λV,µ((2−nk, 2−n(k + 1)]) = π · µ(M)

∫ ∞

0

fn(t) dλV,µ(t),

hence ∫ ∞

0

t dλV,µ(t) =
1

π · µ(M)

∫

M

NV (ω)(1) dµ(ω).
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By Part I of Theorem 3.2, the right-hand side of the last equality is equal to the
Siegel-Veech constant of the pair (V, µ).

Proposition 4.4 Suppose a map V : M → V satisfies conditions (0 ′), (A), (B),
and (C). Then for µ-a.e. ω ∈ M,

lim
R→∞

(πR2)−1αV (ω),R = λV,µ

in the following sense:

lim
R→∞

1

πR2

∫ ∞

0

f(t) dαV (ω),R(t) =

∫ ∞

0

f(t) dλV,µ(t) (1)

for any bounded function f ∈ C(R+) vanishing in a neighborhood of 0.
If, in addition, condition (B) holds for the map W(0,∞)V and the Siegel-Veech

constant of the pair (V, µ) is nonzero, then for µ-a.e. ω ∈ M,

lim
R→∞

α̃V (ω),R = (λV,µ(R+))−1λV,µ

in the following sense:

lim
R→∞

∫ ∞

0

f(t) dα̃V (ω),R(t) =
1

λV,µ(R+)

∫ ∞

0

f(t) dλV,µ(t) (2)

for any bounded function f ∈ C(R+).

Proof. Let K ⊂ R+ be a Borel set such that K ⊂ (ǫ,∞) for some ǫ > 0. By
Proposition 4.3, the map WKV satisfies conditions (0), (A), and (B). Condition (C)
also holds for WKV since NWKV (ω)(R) ≤ ǫ−1NV (ω)(R) for any ω ∈ M and R > 0.
By Part II of Theorem 3.2, for µ-a.e. ω ∈ M we have

lim
R→∞

R−2NWKV (ω)(R) = πλV,µ(K). (3)

Let K denote the countable collection of sets consisting of intervals (r1, r2] such that
r1, r2 are rational numbers and 0 < r1 < r2. By the above there exists a Borel set
U ⊂ M, µ(U) = µ(M), such that for any ω ∈ U and any K ∈ K relation (3) holds.

Take any ω ∈ U . For each function f ∈ L1(R+, λV,µ) set

Fω(f) = lim sup
R→∞

∣∣∣
1

πR2

∫ ∞

0

f(t) dαV (ω),R(t) −
∫ ∞

0

f(t) dλV,µ(t)
∣∣∣.

Suppose f ∈ Cc(R
+) and choose a > 1 such that f = 0 outside the segment [1/a, a].

For any ǫ > 0 there exist disjoint sets K1, . . . , Kn ∈ K and constants b1, . . . , bn such
that the function fǫ = b1χK1 + · · · + bnχKn satisfies the inequality sup |f − fǫ| < ǫ.
Observe that ∫ ∞

0

fǫ(t) dαV (ω),R(t) =
n∑

i=1

biNWKi
V (ω)(R),
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∫ ∞

0

fǫ(t) dλV,µ(t) =
n∑

i=1

biλV,µ(Ki).

Since ω ∈ U , it follows that Fω(fǫ) = 0. Further,
∫ ∞

0

|f(t) − fǫ(t)| dαV (ω),R(t) ≤ ǫNW[1/a,a]V (ω)(R),

∫ ∞

0

|f(t) − fǫ(t)| dλV,µ(t) ≤ ǫλV,µ([a−1, a]).

It follows that Fω(f) ≤ ǫM(a, ω), where M(a, ω) = supR>0R
−2NW[1/a,a]V (ω)(R) +

λV,µ([1/a, a]). Note that M(a, ω) <∞ while ǫ can be chosen arbitrarily small. Thus
Fω(f) = 0.

Now let f be a bounded continuous function on R+ vanishing in a neighborhood
of 0. For any a > 0 there exists f̃a ∈ Cc(R

+) such that f̃a = f on (0, a) and
sup |f̃a − f | ≤ sup |f |. We have

∫ ∞

0

|f(t) − f̃a(t)| dαV (ω),R(t) ≤ NW[a,∞)V (ω)(R) sup |f |,
∫ ∞

0

|f(t) − f̃a(t)| dλV,µ(t) ≤ λV,µ([a,∞)) sup |f |.

By the above Fω(f̃a) = 0, hence Fω(f) ≤ M∞(a, ω) sup |f |, where M∞(a, ω) =
supR>0R

−2NW[a,∞)V (ω)(R) + λV,µ([a,∞)). Since NW[a,∞)V (ω)(R) ≤ a−1NV (ω)(R), it
follows that M∞(a, ω) → 0 as a→ ∞. Thus Fω(f) = 0, i.e., equality (1) holds.

Now suppose the map W(0,∞)V satisfies condition (B). Then λV,µ is a finite
measure. Let K0 denote the collection of intervals (r1, r2] such that r1, r2 are rational
numbers and 0 ≤ r1 < r2. Then there exists a Borel set U0 ⊂ U , µ(U0) = µ(M),
such that for any ω ∈ U0 and any K ∈ K0 relation (3) holds. Take any ω ∈ U0. Let
f be a bounded continuous function on R+. For any ǫ > 0 there exists a bounded
function f̂ǫ ∈ C(R+) such that f̂ǫ vanishes in a neighborhood of 0, f̂ǫ = f on (ǫ,∞),
and sup |f̂ǫ − f | ≤ sup |f |. We have

∫ ∞

0

|f(t) − f̂ǫ(t)| dαV (ω),R(t) ≤ NW(0,ǫ]V (ω)(R) sup |f |,
∫ ∞

0

|f(t) − f̂ǫ(t)| dλV,µ(t) ≤ λV,µ((0, ǫ]) sup |f |.

By the above Fω(f̂ǫ) = 0, therefore Fω(f) ≤ M0(ǫ, ω) sup |f |, where M0(ǫ, ω) =
lim supR>0(πR

2)−1NW(0,ǫ]V (ω)(R) + λV,µ((0, ǫ]). Since ω ∈ U0, we have M0(ǫ, ω) ≤
λV,µ((0, r]) + λV,µ((0, ǫ]) for any rational r ≥ ǫ. Since λV,µ(R+) < ∞, it follows that
M0(ǫ, ω) ≤ 2λV,µ((0, ǫ]) and M0(ǫ, ω) → 0 as ǫ → 0. Thus Fω(f) = 0, i.e., equality
(1) holds for f . In particular, equality (1) holds for f = 1 so we get

lim
R→∞

(πR2)−1αV (ω),R(R+) = λV,µ(R+).

If the Siegel-Veech constant of (V, µ) is nonzero, then λV,µ(R+) > 0 and equality (2)
follows.

16



Proposition 4.5 Suppose a map V : M → V1 satisfies conditions (0), (A), (B),
(C), (E), and the Siegel-Veech constant of the pair (V, µ) is nonzero. Then for µ-a.e.
ω ∈ M,

lim
R→∞

δ̃V (ω),R = m1,

where m1 is Lebesgue measure on S1 normalized so that m1(S
1) = 1. The convergence

means that

lim
R→∞

∫

S1

φ(θ) dδ̃V (ω),R(θ) =

∫

S1

φ(θ) dm1(θ) (4)

for any Riemann integrable function φ on S1.

Proof. By Part III of Theorem 3.2, there exists a Borel set U ⊂ M, µ(U) = µ(M),
such that for any ω ∈ U ,

lim
R→∞

∫

R2

1

R2
ψ

( x
R

)
dνV (ω)(x) = cV,µ

∫

R2

ψ(x) dm(x) (5)

for each compactly supported, Riemann integrable function ψ on R2. Here cV,µ is
the Siegel-Veech constant of (V, µ).

Take any ω ∈ U . Let φ be an arbitrary Riemann integrable function on S1. For
any x ∈ R2 set φ1(x) = φ(x/|x|) if 0 < |x| ≤ 1, and φ1(x) = 0 otherwise. Then φ1 is
a Riemann integrable function on R2, therefore equality (5) holds for ψ = φ1. Since
V (M) ⊂ V1, we have

∫

R2

φ1(x/R) dνV (ω)(x) =

∫

S1

φ(θ) dδV (ω),R(θ)

for all R > 0. Besides,

∫

R2

φ1(x) dm(x) = π

∫

S1

φ(θ) dm1(θ).

Hence

lim
R→∞

R−2

∫

S1

φ(θ) dδV (ω),R(θ) = πcV,µ

∫

S1

φ(θ) dm1(θ).

In particular, the latter relation holds for φ = 1 so we get

lim
R→∞

R−2δV (ω),R(S1) = πcV,µ.

Since cV,µ > 0, equality (4) follows.

Proposition 4.6 Suppose a map V : M → V satisfies conditions (0 ′), (A), (B),
(C), and (E). Then for µ-a.e. ω ∈ M,

lim
R→∞

(πR2)−1DV (ω),R = m1 × λV,µ
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in the following sense:

lim
R→∞

1

πR2

∫

S1×R+

f(Θ) dDV (ω),R(Θ) =

∫

S1

∫ ∞

0

f(θ, t) dm1(θ) dλV,µ(t) (6)

for any bounded function f ∈ C(S1 × R+) vanishing in a neighborhood of S1 × {0}.
If, in addition, condition (B) holds for the map W(0,∞)V and the Siegel-Veech

constant of the pair (V, µ) is nonzero, then for µ-a.e. ω ∈ M,

lim
R→∞

D̃V (ω),R = (λV,µ(R+))−1
m1 × λV,µ

in the following sense:

lim
R→∞

∫

S1×R+

f(Θ) dD̃V (ω),R(Θ) =
1

λV,µ(R+)

∫

S1

∫ ∞

0

f(θ, t) dm1(θ) dλV,µ(t)

for any bounded function f ∈ C(S1 × R+).

Proof. Let K ⊂ R+ be a Borel set such that K ⊂ (ǫ,∞) for some ǫ > 0. Then the
mapWKV satisfies conditions (0), (A), (B), (C), and (E) (cf. the proof of Proposition
4.4). As shown in the proof of Proposition 4.5, for µ-a.e. ω ∈ M we have

lim
R→∞

R−2

∫

S1

φ(θ) dδWKV (ω),R(θ) = πλV,µ(K)

∫

S1

φ(θ) dm1(θ) (7)

for any Riemann integrable function φ on S1. Let K denote the collection of intervals
(r1, r2] such that r1, r2 are rational numbers and 0 < r1 < r2. By the above there
exists a Borel set U ⊂ M, µ(U) = µ(M), such that for any ω ∈ U , any K ∈ K, and
any function φ ∈ C(S1) relation (7) holds.

Take any ω ∈ U . For each function f ∈ L1(S1 × R+,m1 × λV,µ) set

Fω(f) = lim sup
R→∞

∣∣∣
1

πR2

∫

S1×R+

f(Θ) dDV (ω),R(Θ) −
∫

S1

∫ ∞

0

f(θ, t) dm1(θ) dλV,µ(t)
∣∣∣.

Suppose f ∈ Cc(S
1×R+), i.e., f is a continuous function on S1×R+ vanishing outside

S1 × [1/a, a] for some a > 1. For any ǫ > 0 there exist disjoint sets K1, . . . , Kn ∈ K
and functions φ1, . . . , φn ∈ C(S1) such that the function fǫ defined by fǫ(θ, t) =
φ1(θ)χK1(t)+ · · ·+φn(θ)χKn(t), θ ∈ S1, t ∈ R+, satisfies the inequality sup |f−fǫ| <
ǫ. Observe that

∫

S1×R+

fǫ(Θ) dDV (ω),R(Θ) =
n∑

i=1

∫

S1

φi(θ) dδWKi
V (ω),R(θ),

∫

S1

∫ ∞

0

fǫ(θ, t) dm1(θ) dλV,µ(t) =
n∑

i=1

λV,µ(Ki)

∫

S1

φi(θ) dm1(θ).
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Since ω ∈ U , it follows that Fω(fǫ) = 0. Further,

∫

S1×R+

|f(Θ) − fǫ(Θ)| dDV (ω),R(Θ) ≤ ǫNW[1/a,a]V (ω)(R),

∫

S1

∫ ∞

0

|f(θ, t) − fǫ(θ, t)| dm1(θ) dλV,µ(t) ≤ ǫλV,µ([a−1, a]).

It follows that Fω(f) ≤ ǫM(a, ω), where M(a, ω) = supR>0R
−2NW[1/a,a]V (ω)(R) +

λV,µ([1/a, a]). Since M(a, ω) < ∞ while ǫ can be chosen arbitrarily small, we have
Fω(f) = 0, i.e., equality (6) holds.

The remaining part of the proof is completely analogous to the corresponding
part of the proof of Proposition 4.4 and we omit it.

5 Translation surfaces. The Delaunay partitions

Let M be a compact connected oriented surface. A translation structure on M is an
atlas of coordinate charts ω = {(Uα, fα)}α∈A, where Uα is a domain in M and fα is
an orientation-preserving homeomorphism of Uα onto a domain in R2, such that:

(i) all transition functions are translations in R2;
(ii) chart domains Uα, α ∈ A, cover all surface M except for finitely many points

(called singular points);
(iii) the atlas ω is maximal relative to the conditions (i) and (ii);
(iv) a punctured neighborhood of any singular point covers a punctured neigh-

borhood of a point in R2 via an m-to-1 map which is a translation in coordinates of
the atlas ω; the number m is called the multiplicity of the singular point.

A translation surface is a compact connected oriented surface equipped with a
translation structure. In what follows we assume that each translation surface has
at least one singular point.

Let M be a translation surface and ω be the translation structure of M . Each
translation of the plane R2 is a smooth map preserving Euclidean metric and
Lebesgue measure on R2. Hence the translation structure ω induces a smooth struc-
ture, a flat Riemannian metric, and a finite Borel measure on the surface M punc-
tured at the singular points of ω. Each singular point of ω is a cone type singularity
of the metric. The cone angle is equal to 2πm, where m is the multiplicity of the sin-
gular point. A singular point of multiplicity 1 is called removable as the flat metric
can be continuously extended to this point. Any geodesic of the metric is a straight
line in coordinates of the atlas ω. The translation structure ω allows us to identify
the tangent space at any nonsingular point x ∈ M with the Euclidean space R2 so
that velocity be an integral of the geodesic flow with respect to this identification.
Thus each oriented geodesic is assigned a direction v ∈ S1.

Let M be a compact connected oriented surface. Suppose M is endowed with a
complex structure given by an atlas of charts (Uα, zα), α ∈ A, and let q be a nonzero
Abelian differential (holomorphic 1-form) on M . A chart (U, z) is called a natural
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parameter of q if q = dz in U . Let ω denote the atlas of all natural parameters of
q. By identifying C with R2 we can assume that charts of ω range in R2. Then ω
becomes a translation structure on M . The singular points of ω are the zeroes of the
differential q, namely, a zero of order n is a singular point of multiplicity n+1. Every
translation structure on M without removable singular points can be obtained this
way.

A simple and effective way to construct translation surfaces is to glue them from
polygons. Let P1, . . . , Pn be disjoint plane polygons. The natural orientation of R2

induces an orientation of the boundary of every polygon. Suppose all sides of the
polygons P1, . . . , Pn are distributed into pairs such that two sides in each pair are of
the same length and direction, and of opposite orientations. Glue the sides in each
pair by translation. Then the union of the polygons P1, . . . , Pn becomes a surface M .
By construction, the surface M is compact and oriented. Suppose M is connected
(if it is not, then we should apply the construction to a smaller set of polygons). The
restrictions of the identity map on R2 to the interiors of the polygons P1, . . . , Pn can
be regarded as charts of M . This finite collection of charts extends to a translation
structure ω on M . The translation structure ω is uniquely determined if we require
that the set of singular points of ω be the set of points corresponding to vertices of
the polygons P1, . . . , Pn.

Let M be a translation surface. A saddle connection of M is a geodesic segment
joining two singular points or a singular point to itself and having no singular points
in its interior. Two saddle connections of M are said to be disjoint if they have
no common interior points (common endpoints are allowed). A domain U ⊂ M
containing no singular points is called a triangle (a polygon, an n-gon) if there is a
map f : U → R2 such that the chart (U, f) belongs to the translation structure of
M and f(U) is the interior of a triangle (resp. a polygon, an n-gon) in the plane R2.
Suppose we have a finite collection of pairwise disjoint saddle connections dividing
the surface M into finitely many domains such that each domain is a polygon and,
moreover, each n-gon is bounded by n saddle connections (in general, an n-gon on
M may be bounded by more than n saddle connections). Then M can be obtained
by gluing together plane polygons as described above so that the saddle connections
correspond to sides of glued polygons. The following well-known proposition shows,
in particular, that any translation surface can be obtained this way.

Proposition 5.1 (a) Any collection of pairwise disjoint saddle connections of a
translation surface M can be extended to a maximal collection.

(b) Any maximal collection of pairwise disjoint saddle connections partitions the
surface M into triangles, each triangle being bounded by three saddle connections.

(c) For any maximal collection, the number of saddle connections is equal to 3m
and the number of triangles in the corresponding triangulation is equal to 2m, where
m is the sum of multiplicities of singular points.

(d) m = 2p− 2 + k, where p is the genus of M and k is the number of singular
points of M .

Every translation surface has a useful Delaunay partition. We shall define this
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partition following the paper of Masur and Smillie [MS].
Let Z be the set of singular points of a translation surface M . For any x ∈M \Z

let d(x, Z) denote the distance from x to the set Z. A geodesic segment joining x to
a singular point is called a length-minimizing path if its length is equal to d(x, Z).
Any point x ∈ M \ Z admits at least one length-minimizing path and the number
of all such paths is at most finite (see [MS]).

For any R > 0 let B(R) denote the disk of radius R in R2 centered at the origin.
Given a point x ∈ M \ Z, there is a unique map ıx : B(d(x, Z)) → M \ Z such
that ıx(0) = x and ıx is a translation with respect to the translation structure of M .
The map ıx is uniquely extended to a continuous map of the closure of B(d(x, Z))
to M . Let Z ′

x be the set of points in ∂B(d(x, Z)) that map to points in Z. Z ′
x is

a nonempty finite set. Each segment joining the origin to a point in Z ′
x is mapped

by ıx to a length-minimizing path. The cardinality of Z ′
x is equal to the number of

length-minimizing paths starting at x. Let Hx be the convex hull of Z ′
x. If Z ′

x consists
of two points then Hx is a segment and its image under ıx is a saddle connection
called a Delaunay edge. If Z ′

x consists of more than two points then Hx is a polygon
inscribed in the circle ∂B(d(x, Z)). It is shown in [MS] that the restriction of the
map ıx to the interior of Hx is injective. The image under ıx of the interior of Hx is
a polygon on M called a Delaunay cell.

Proposition 5.2 ([MS]) Distinct Delaunay edges are disjoint saddle connections.
Distinct Delaunay cells are disjoint domains. Any Delaunay cell is bounded by De-
launay edges. Any Delaunay edge separates two Delaunay cells or a Delaunay cell
from itself.

Proposition 5.2 implies that Delaunay edges partition the surface M into Delau-
nay cells. This partition is called the Delaunay partition of the translation surface
M . By Proposition 5.1, the number of Delaunay edges and Delaunay cells is finite.

Proposition 5.3 Suppose τ is a triangulation of a translation surface M by a max-
imal set of disjoint saddle connections. Then τ is the Delaunay partition of M if
and only if for any edge L of τ two angles θ1, θ2 opposite L in two triangles of τ
bounded by L satisfy the inequality θ1 + θ2 < π.

Proof. By Proposition 5.2, the triangulation τ is the Delaunay partition of the
translation surface M if and only if each triangle of τ is a Delaunay cell.

Denote by ω the translation structure of M . For any triangle T of τ there is a
map fT : T → R2 such that (T, fT ) ∈ ω. The map fT is determined up to translation.
We can assume without loss of generality that the triangle fT (T ) ⊂ R2 is inscribed
in a circle centered at the origin. By RT denote the radius of the circle.

Let L be an edge of τ and T1, T2 be the triangles of τ bounded by L. Let θ1 and
θ2 be the angles of T1 and T2 opposite L. By U denote the union of T1, T2, and the
interior of the edge L. Then U is a polygon. Let f : U → R2 be a map such that
(U, f) ∈ ω and f = fT1 on T1. Suppose T1 is a Delaunay cell. By Z denote the set of
singular points of M . Then there exists a point x ∈M \ Z such that d(x, Z) = RT1
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and f(ıx(x
′)) = x′ for any x′ ∈ f(T1). It is easy to see that f(ıx(x

′)) = x′ for
any x′ ∈ f(U) ∩B(RT1). The only points in the closure of B(RT1) mapped by ıx to
singular points are vertices of the triangle f(T1). Therefore the vertex of the triangle
f(T2) opposite its side f(L) lies outside the circle ∂B(RT1). The latter condition is
equivalent to the inequality θ1 + θ2 < π.

Now suppose that for any edge L of τ the sum of two angles opposite L is less
than π. Let T be a triangle of τ , x0 ∈ T , and I be a geodesic segment joining x0 to a
singular point. Further, let x′0 = fT (x0) and y′ be a point in R2 such that the vector
y′ − x′0 is of the same length and direction as I. We claim that y′ lies outside the
circle ∂B(RT ) unless it is a vertex of the triangle fT (T ). It easily follows from the
claim that T is a Delaunay cell. The claim is proved by induction on the number n
of times the segment I intersects edges of the triangulation τ . In the case n = 0 the
segment I does not leave the triangle T hence the point y′ is a vertex of fT (T ). Now
let n > 0 and assume the claim holds for all smaller numbers of intersections. Let
L be the edge of τ first intersected by I and T1 be the triangle of τ separated from
T by L. Let U denote the union of triangles T , T1, and the interior of the edge L.
There exists a map f : U → R2 such that (U, f) ∈ ω and f = fT on T . Let z′ be the
center of the circle circumscribed around the triangle f(T1). Then f(x) = z′+fT1(x)
for all x ∈ T1. Take a point x1 ∈ T1 ∩ I such that the subsegment of I joining x0 to
x1 intersects L only once and does not intersect the other edges of τ . By I1 denote
the subsegment of I joining x1 to a singular point. Then the point x′1 = f(x1) lies
on the segment joining x′0 to y′ and the vector y′ − x′1 is of the same length and
direction as I1. By construction, I1 has n − 1 intersections with edges of τ . By the
inductive assumption the point y′ lies outside the circle z′ + ∂B(RT1) circumscribed
around f(T1) unless y′ is the vertex of f(T1) opposite the side f(L). Since the sum
of two angles opposite f(L) in triangles f(T ) and f(T1) is less than π, it follows
that the disk z′ + B(RT1) contains the part of the disk B(RT ) separated from the
triangle f(T ) by f(L). Hence y′ lies outside the circle ∂B(RT ). The claim is proved
and so is the proposition.

Lemma 5.4 Suppose M is a translation surface of area at most 1, x ∈M , and d is
the distance from x to the closest singular point of M . If d ≥

√
2/π then x belongs

to a periodic cylinder of length at most d−1.

Proof. There is a map ı : B(d) →M such that ı(0) = x and ı is a translation with
respect to the translation structure of M . Let r > 0 be the maximal number such
that ı is injective on B(r). Then πr2 ≤ 1 since the area of M is at most 1. Assuming
d ≥

√
2/π, one has r < d. By the choice of r, there are distinct points x′1, x

′
2 ∈ ∂B(r)

such that ı(x′1) = ı(x′2). It is easy to observe that the segment joining x′1 to x′2 is
a diameter of the disk B(r) and ı maps the segment to a periodic geodesic passing
through x. Hence x belongs to a periodic cylinder C of length 2r. Let w denote
the width of C. The area of the cylinder is equal to 2rw, therefore 2rw ≤ 1. The
Pythagorean theorem implies the distance from x to the closest singular point on the
boundary of C is at most

√
(w/2)2 + r2. Hence d2 ≤ (w/2)2 + r2. Since d ≥

√
2/π,

we have r2 ≤ d2/2, then d2/2 ≤ (w/2)2. In particular, 2r ≤ w−1 ≤ d−1.

22



6 Moduli spaces of translation surfaces

Let M , M ′ be translation surfaces and ω, ω′ be their translation structures. An
orientation-preserving homeomorphism f : M → M ′ is called an isomorphism of
the translation surfaces if f maps the set of singular points of M onto the set of
singular points of M ′ and f is a translation in local coordinates of the atlases ω
and ω′. The translation structures ω and ω′ are called isomorphic if there is an
isomorphism f : M →M ′. If M = M ′ and ω = ω′ then the isomorphism f is called
an automorphism of ω. Automorphisms of the translation structure ω form a group
Aut(ω), which is finite.

Given positive integers p and n, let Mp be a compact connected oriented sur-
face of genus p and Zn be a subset of Mp of cardinality n. Denote by Ω(p, n)
the set of translation structures on Mp such that Zn is the set of singular points.
Let ω = {(Uα, φα)}α∈A be a translation structure on Mp. Given an orientation-
preserving homeomorphism f : Mp → Mp, the atlas ωf = {(f−1(Uα), φαf)}α∈A is
a translation structure on Mp isomorphic to ω. Let H(p, n) denote the group of
orientation-preserving homeomorphisms of the surface Mp leaving invariant the set
Zn. By H0(p, n) denote the subgroup of H(p, n) consisting of homeomorphisms iso-
topic to the identity. For any ω ∈ Ω(p, n) and f ∈ H(p, n) the translation structure
ωf belongs to Ω(p, n). Isomorphic translation structures ω, ω′ ∈ Ω(p, n) are called
isotopic if ω′ = ωf0 for some f0 ∈ H0(p, n). Let Q(p, n) denote the set of equiva-
lence classes of isotopic translation structures in Ω(p, n) and MQ(p, n) denote the
set of equivalence classes of isomorphic translation structures in Ω(p, n). The map
H(p, n)×Ω(p, n) ∋ (f, ω) 7→ ωf−1 defines an action of the group H(p, n) on the set
Ω(p, n). By definition, Q(p, n) = Ω(p, n)/H0(p, n) and MQ(p, n) = Ω(p, n)/H(p, n).
The mapping class group Mod(p, n) = H(p, n)/H0(p, n) acts naturally on the set
Q(p, n) and MQ(p, n) = Q(p, n)/Mod(p, n).

Any translation structure on a surface of genus p with n singular points is iso-
morphic to a translation structure in Ω(p, n). Thus MQ(p, n) is the moduli space of
translation surfaces of genus p with n singular points.

As mentioned in Section 5, there is a one-to-one correspondence between transla-
tion structures in Ω(p, n) and pairs (X, q) such that X is a complex structure on Mp

and q is an Abelian differential of X whose zeroes are contained in Zn. This allows
one to regard MQ(p, n) as the moduli space of Abelian differentials on Riemann
surfaces of genus p with at most n zeroes.

The set Q(p, n) has the natural structure of an affine manifold while the moduli
space MQ(p, n) has the structure of an affine orbifold. We shall describe these
structures following the paper [MS].

Let γ : [0, 1] → Mp be a continuous path. For any ω ∈ Ω(p, n) there exists a
continuous path γω : [0, 1] → R2 such that γ is a translation of γω in coordinates of
the atlas ω. The path γω is determined up to translation. The vector γω(1)−γω(0) is
called the holonomy vector of γ with respect to ω and is denoted by holω(γ). If γ is a
geodesic segment of ω, then the vector holω(γ) is of the same length and direction as
γ. Suppose q is an Abelian differential associated to the translation structure ω (see
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Section 5). If the path γ is piecewise smooth then, up to the natural identification
of C with R2,

holω(γ) =

∫

γ

q.

The holonomy vector holω(γ) does not change when we replace the path γ by a
homologous one. If the path γ is closed or its endpoints belong to the set Zn, then
holω(γ) does not change when we replace the translation structure ω by an iso-
topic one. The map γ 7→ holω(γ) gives rise to a map dev(ω) : H1(Mp, Zn; Z) → R2

that is an element of the relative cohomology group H1(Mp, Zn; R2). As the rela-
tive cohomology class dev(ω) depends only on the isotopy class of the translation
structure ω, we have a well-defined map dev : Q(p, n) → H1(Mp, Zn; R2). The group
H1(Mp, Zn; R2) is a real vector space of dimension 2N , where N = 2p+ n− 1 is the
rank of the relative homology group H1(Mp, Zn; Z).

Let T (p, n) denote the set of pairs (ω, τ), where ω ∈ Ω(p, n) and τ is a partition
of the surface Mp by a maximal set of pairwise disjoint saddle connections of the
translation structure ω. By Proposition 5.1, cells of the partition τ are triangles with
respect to ω. We call the pair (ω, τ) a triangulation. A homeomorphism f ∈ H(p, n)
maps τ to a partition fτ , which is a partition by disjoint saddle connections of the
translation structure ωf−1. The map H(p, n) × T (p, n) ∋ (f, (ω, τ)) 7→ (ωf−1, fτ)
defines an action of the group H(p, n) on T (p, n). Two elements (ω1, τ1), (ω2, τ2) ∈
T (p, n) are called affine equivalent if there exists f0 ∈ H0(p, n) such that f0 maps
each triangle of τ1 to a triangle of τ2 and f0 is an affine map in local coordinates of the
atlases ω1 and ω2 when restricted to any triangle of τ1. By T (p, n) denote the set of
affine equivalence classes of the above triangulations. T (p, n) is a countable set. The
affine equivalence relation is preserved by the action of H(p, n) and, moreover, each
equivalence class is invariant under the action of the subgroup H0(p, n). Hence the
H(p, n) action on T (p, n) gives rise to an action of the group Mod(p, n) on T (p, n).
Let MT (p, n) = T (p, n)/Mod(p, n). An element of MT (p, n) can be regarded as a
pattern to glue a translation surface of genus p with n singular points from triangles.
Since the number of triangles to be glued together is fixed, the set MT (p, n) is finite.

For any τ ∈ T (p, n) let N(τ) denote the set of translation structures in Ω(p, n)
that admit a triangulation in the class τ . The set N(τ) is invariant under the action
of the group H0(p, n), therefore we shall consider N(τ) as a subset of Q(p, n).

Lemma 6.1 For any τ ∈ T (p, n) the restriction of the map dev to the set N(τ) is
injective. The image dev(N(τ)) is an open set that can be determined by a system
of inequalities Qi(v) > 0, 1 ≤ i ≤ s, where Q1, . . . , Qs are quadratic forms on the
vector space H1(Mp, Zn; R2). For any τ1, τ2 ∈ T (p, n) the set dev(N(τ1) ∩N(τ2)) is
also open.

Proof. Let (ω′
0, τ0) ∈ T (p, n), τ ∈ T (p, n) be the affine equivalence class of (ω′

0, τ0),
and ω0 ∈ Q(p, n) be the isotopy class of ω′

0. Take any triangle T of the triangulation
τ0. There is a map fT : T → R2 such that (T, fT ) ∈ ω′

0. Let Λ denote the euclidean
area form on R2. For any vectors v = (v1, v2) and u = (u1, u2), Λ(v, u) = v1u2−u1v2.
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Let γ1T and γ2T be two sides of T oriented so that Λ(holω0(γ1T ), holω0(γ2T )) > 0. For
any q ∈ H1(Mp, Zn; R2) let QT (q) = Λ(q(γ1T ), q(γ2T )). Clearly, QT is a quadratic
form on H1(Mp, Zn; R2). Note that QT (dev(ω0)) is the area of the triangle T . We
claim that dev(N(τ)) is the set of q ∈ H1(Mp, Zn; R2) such that QT (q) > 0 for any
triangle T of τ0. Given ω ∈ N(τ), for any triangle T of τ0 there exists a linear map
bT : R2 → R2 such that charts (T, bTfT ) belong to a translation structure ω′ ∈ ω.
Clearly, each operator bT is invertible and orientation-preserving. Then

QT (dev(ω)) = Λ(bT holω0(γ1T ), bT holω0(γ2T )) = (det bT )QT (dev(ω0)) > 0

for all T . If dev(ω) = dev(ω0) then each bT is the identity. Since charts (T, fT )
uniquely determine the translation structure ω′

0, it follows that ω = ω0. Thus the
map dev is injective on N(τ). Now consider any q ∈ H1(Mp, Zn; R2) such that
QT (q) > 0 for all triangles T of τ0. For each T let bT be a linear operator in R2

such that bT holω0(γ1T ) = q(γ1T ), bT holω0(γ2T ) = q(γ2T ). Since QT (q) > 0, bT is
invertible and orientation-preserving. If γ is a common edge of triangles T1 and T2,
then bT1 holω0(γ) = bT2 holω0(γ) = q(γ). Hence the set of charts (T, bTfT ) extends
to a translation structure ω′

1 ∈ Ω(p, n). By construction (ω′
1, τ0) ∈ τ , therefore the

isotopy class ω1 of ω′
1 belongs to N(τ). Also, dev(ω1) = q since the two cohomologies

take the same values on edges of τ0.
Suppose ω0 ∈ N(τ1) ∩ N(τ2) for some τ1, τ2 ∈ T (p, n). Let ω′

0 be a translation
structure in the isotopy class ω0 and τ ′1, τ

′
2 be triangulations such that (ω′

0, τ
′
1) ∈ τ1,

(ω′
0, τ

′
2) ∈ τ2. Choose an edge γ of τ ′2. If γ is not an edge of τ ′1 then edges of τ ′1 break

this saddle connection into several geodesic segments x0x1, x1x2, . . . , xkxk+1, where
x0 and xk+1 are endpoints of γ and x1, . . . , xk are interior points of edges of τ ′1. Take
any ǫ > 0. Let x′1, . . . , x

′
k be points of Mp such that each x′i (1 ≤ i ≤ k) lies on

the same edge of τ ′1 as xi and the length of the subsegment of the edge bounded by
x′i and xi is less than ǫ. Assuming ǫ is small enough, there are geodesic segments
x0x

′
1, x

′
1x

′
2, . . . , x

′
kxk+1 that form a path homotopic to γ. By Uǫ(γ) denote the set of

all such piecewise geodesics. If γ is a common edge of τ ′1 and τ ′2, let Uǫ(γ) = {γ}. Let
γ1, . . . , γl be all edges of τ ′2. If ǫ is small enough then for any γ′j ∈ Uǫ(γj), 1 ≤ j ≤ l,
the curves γ′1, . . . , γ

′
l are simple and disjoint except for endpoints. The partition of

Mp by these curves can be mapped onto τ ′2 by a homeomorphism f ∈ H0(p, n).
By Pǫ denote the set of all such partitions. For any ω ∈ N(τ1) there exists ω′ ∈ ω
such that (ω′, τ ′1) ∈ τ1 and the identity map of Mp is affine on every triangle of τ ′1
with respect to translation structures ω′

0 and ω′. If dev(ω) is close to dev(ω0) then
linear parts of the restrictions to triangles of τ ′1 are close to 1. It follows that if
dev(ω) is close enough to dev(ω0) then each of the sets Uǫ(γ1), . . . , Uǫ(γl) contains
a saddle connection of the translation structure ω′. Then Pǫ contains a partition
τ ′ such that (ω′, τ ′) ∈ τ2, hence ω ∈ N(τ2). Thus dev(ω0) is an interior point of
dev(N(τ1) ∩N(τ2)).

By Proposition 5.1, the sets N(τ), τ ∈ T (p, n), cover Q(p, n). We use this cover-
ing and the map dev to endow Q(p, n) with a topology, smooth and affine structures,
and a measure. By Lemma 6.1, there exists a unique topology on Q(p, n) such that
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any N(τ) is an open set and the restriction of dev to N(τ) is a homeomorphism
onto dev(N(τ)). The topological space Q(p, n) is a 2N -dimensional manifold. Fur-
ther, there is a unique affine (smooth, real analytic) structure on Q(p, n) such that
the restriction of the map dev to any N(τ), τ ∈ T (p, n), is an affine (resp. smooth,
analytic) map. The euclidean volume form on the vector space H1(Mp, Zn; R2) is
made canonical by the requirement that the lattice H1(Mp, Zn; Z2) have covolume
1. The volume element on Q(p, n) is obtained from the pull-back, this volume form
by the map dev.

Lemma 6.2 Let ω ∈ Ω(p, n). Then each set of disjoint saddle connections of ω that
do not divide the surface Mp can be extended to a maximal set of this kind. Each
maximal set consists of N = 2p+ n− 1 saddle connections whose homology classes
comprise a basis for H1(Mp, Zn; Z).

Proof. Let γ1, . . . , γk be disjoint saddle connections of ω that do not divide the
surface Mp. Let m = 2p − 2 + n. By Proposition 5.1, k ≤ 3m and there exist
γk+1, . . . , γ3m such that γ1, . . . , γ3m are disjoint saddle connections of ω that form a
triangulation τ of Mp. There are 2m triangles in the triangulation τ . We can arrange
them in a sequence T0, T1, . . . , T2m−1 so that there exist a sequence of domains U0 =
T0 ⊂ U1 ⊂ . . . ⊂ U2m−1 ⊂ Mp and a sequence of edges e1, . . . , e2m−1 of τ such that
for any j, 1 ≤ j ≤ 2m − 1, the triangle Tj is disjoint from Uj−1, ej separates Tj

from Uj−1, and Uj is the union of Uj−1, Tj, and the interior of ej. The complement
of U2m−1 is the union of the set of singular points of ω and N = m + 1 edges of τ .
Since saddle connections γ1, . . . , γk do not divide the surface Mp, it can be assumed
without loss of generality that all of them are in the complement of U2m−1.

It is easy to observe that the group H1(Mp, Zn; Z) is generated by the homology
classes of edges of τ . For any j, 1 ≤ j ≤ 2m − 1, two sides of the triangle Tj

different from ej are disjoint from Uj. It follows that H1(Mp, Zn; Z) is generated by
the homology classes of N edges of τ disjoint from U2m−1. Since H1(Mp, Zn; Z) is a
free Abelian group of rank N , the latter classes constitute its basis.

Suppose Γ = (γ1, . . . , γN) is an ordered basis of cycles for H1(Mp, Zn; Z). De-
fine a map fΓ : H1(Mp, Zn; R2) → (R2)N ≈ R2N by fΓ(q) = (q(γ1), . . . , q(γN)).
fΓ is an isomorphism of vector spaces. Since fΓ(H1(Mp, Zn; Z2)) = Z2N , fΓ pre-
serves volumes. Now define a map FΓ : Q(p, n) → (R2)N ≈ R2N by FΓ(ω) =
(holω(γ1), . . . , holω(γN)). Clearly, FΓ(ω) = fΓ(dev(ω)). The map FΓ is a local home-
omorphism. The volume element on Q(p, n) is the pull-back of the canonical volume
form on R2N by the map FΓ.

Lemma 6.3 The group Mod(p, n) acts on Q(p, n) by affine homeomorphisms pre-
serving volume element. The action is properly discontinuous.

Proof. Every mapping class φ ∈ Mod(p, n) induces an automorphism φ∗ of the
group H1(Mp, Zn; Z). Define a linear operator φ∗ on H1(Mp, Zn; R2) by (φ∗q)(γ) =
q(φ∗γ), γ ∈ H1(Mp, Zn; Z). φ∗ is invertible and preserves the lattice H1(Mp, Zn; Z2),
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hence it is volume preserving. Observe that dev(ωφ−1) = φ∗(dev(ω)) for all ω ∈
Q(p, n). Besides, if ω ∈ N(τ) for some τ ∈ T (p, n) then ωφ−1 ∈ N(φτ). It follows
that the Mod(p, n) action on Q(p, n) is affine and preserves the volume element.

Let ω0 ∈ N(τ), τ ∈ T (p, n). Choose a triangulation (ω′
0, τ

′
0) ∈ τ such that ω′

0 is
in the isotopy class ω0. There exists a neighborhood U ⊂ N(τ) of ω0 such that for
every translation structure ω′ in an isotopy class ω ∈ U any saddle connection of
ω′ of length l is homotopic to a piecewise geodesic path of ω′

0 of length at most 2l,
while any saddle connection of ω′

0 of length l0 is homotopic to a piecewise geodesic
path of ω′ of length at most 2l0. Let us show that Uφ−1 ∩ U 6= ∅ for only finitely
many φ ∈ Mod(p, n). Denote by K the set of relative homotopy classes of edges of
τ ′0. Let R be the maximal length of edges of τ ′0. By K ′

1 denote the set of paths γ
on Mp with endpoints in Zn such that γ is a piecewise geodesic path of length at
most 4R with respect to ω′

0. For any γ ∈ K ′
1 there is a homotopic path γ′ ∈ K ′

1

that is a saddle connection or the sum of several saddle connections of ω′
0. By K1

denote the set of relative homotopy classes of paths in K ′
1. Clearly, K ⊂ K1. Since

the translation structure ω′
0 has only finitely many saddle connections of length at

most 4R, the set K1 is finite. Suppose Uφ−1 ∩ U 6= ∅ for some φ ∈ Mod(p, n), i.e.,
ω1φ

−1 = ω2 for some ω1, ω2 ∈ U . Pick translation structures ω′
1 ∈ ω1 and ω′

2 ∈ ω2.
Let τ ′1 be a partition such that (ω′

1, τ
′
1) ∈ τ . By the choice of U , all edges of τ ′1 are

of length at most 2R. There is a homeomorphism φ0 ∈ φ that maps each edge of τ ′1
onto a saddle connection of ω′

2 of the same length. By the choice of U , the mapping
class φ sends each homotopy class from K to a homotopy class in K1. Since φ is
uniquely determined by its action on elements of K and K1 is a finite set, there are
only finitely many such φ. Furthermore, there exists a neighborhood U0 ⊂ U of ω0

such that U0φ
−1 ∩ U0 6= ∅ for a φ ∈ Mod(p, n) if and only if φω0 = ω0, i.e., φ is the

mapping class of an automorphism of ω′
0.

Since the action of Mod(p, n) on Q(p, n) is properly discontinuous and volume
preserving, the quotient space MQ(p, n) inherits the structure of an affine orbifold
along with a volume element.

Lemma 6.4 The moduli space MQ(p, n) has finitely many connected components.

Proof. It follows from Lemma 6.1 that any of the open sets N(τ), τ ∈ T (p, n),
has only finitely many connected components. Since MT (p, n) is a finite set, there
exist τ1, . . . , τk ∈ T (p, n) such that the natural projection π0 : Q(p, n) → MQ(p, n)
maps the union N(τ1)∪ . . .∪N(τk) onto MQ(p, n). Then the number of connected
components of MQ(p, n) is at most the number of connected components of N(τ1)∪
. . . ∪N(τk), which is finite.

Let α = (m1, . . . ,mn) be a nondecreasing sequence of positive integers such
that m1 + · · · + mn = 2p − 2 + n. By H(α) denote the set of isomorphy classes
of translation surfaces with n singular points of multiplicities m1, . . . ,mn. H(α) is
called a stratum. The stratum H(α) is a nonempty open subset of MQ(p, n). The
moduli space MQ(p, n) is a disjoint union of strata. By Lemma 6.4, each stratum
has only finitely many connected components. The complete classification of all
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connected components for each stratum was obtained by Kontsevich and Zorich
[KZ]. In particular, any stratum has at most 3 connected components.

For any τ ∈ T (p, n) let M(τ) denote the set of translation structures ω ∈ Ω(p, n)
such that the Delaunay partition of ω is a triangulation in the class τ . Let ≺ represent
an ordering of the homology classes of edges of the triangulation τ . Note that edges
of τ need not be oriented so ≺ is actually an ordering of pairs of opposite homology
classes. By M(τ,≺) denote the set of translation structures ω ∈M(τ) such that for
any two nonhomologous Delaunay edges e1 and e2 of ω the edge e1 is shorter than
e2 if the homology class of e1 is less than the homology class of e2 in the ordering
≺. Let h be one of the least homology classes with respect to ≺ (the other is −h).
By Mh(τ,≺) denote the set of ω ∈M(τ,≺) such that the holonomy vector holω(h)
belongs to the halfplane R2

+ = {(x1, x2) ∈ R2 : x2 > 0}. The sets M(τ), M(τ,≺),
and Mh(τ,≺) are invariant under the action of H0(p, n) so we consider them as
subsets of Q(p, n). Then Mh(τ,≺) ⊂ M(τ,≺) ⊂ M(τ) ⊂ N(τ). M(τ,≺) is called a
Delaunay triangulation piece while Mh(τ,≺) is called a halfpiece. Clearly, the sets
M(τ), τ ∈ T (p, n), are disjoint. Two Delaunay triangulation pieces M(τ1,≺1) and
M(τ2,≺2) are disjoint unless τ1 = τ2 and ≺1=≺2. Two halfpieces Mh1(τ1,≺1) and
Mh2(τ2,≺2) are disjoint unless τ1 = τ2, ≺1=≺2, and h1 = h2.

Lemma 6.5 M(τ), M(τ,≺), and Mh(τ,≺) are open subsets of Q(p, n). The natural
projection π0 : Q(p, n) → MQ(p, n) is injective on Mh(τ,≺). There exist finitely
many disjoint Delaunay triangulation halfpieces Mh1(τ1,≺1), . . . ,M

hk(τk,≺k) such
that π0 is injective on their union and π0(M

h1(τ1,≺1)∪ . . .∪Mhk(τk,≺k)) is a subset
of MQ(p, n) of full volume.

Proof. Let ω′ ∈ Ω(p, n) be a representative of an ω ∈ N(τ) and τ ′ be a triangulation
of Mp such that (ω′, τ ′) ∈ τ . Let e0 be an edge of τ ′ and T1, T2 be triangles of τ ′

bounded by e0. By θi (i = 1, 2) denote the angle of Ti opposite e0. Let e1, e2 be sides
of T1 different from e0. Then cos θ1 = (2l1l2)

−1(l21 + l22 − l20), where li = | holω(ei)|,
i = 0, 1, 2. The homotopy classes of e0, e1, and e2 depend only on τ . It follows
that cos θ1 depends continuously on ω. Likewise, cos θ2 is a continuous function of
ω ∈ N(τ). Since 0 < θ1, θ2 < π, we have θ1 + θ2 < π if and only if cos θ1 +cos θ2 > 0.
By Proposition 5.3, M(τ) can be determined as the set of ω ∈ N(τ) satisfying
inequalities fi(ω) > 0, i = 1, . . . , k, where f1, . . . , fk are continuous functions on
N(τ). Hence M(τ) is open. Now M(τ,≺) is the intersection of M(τ) with a finite
number of open sets of the form {ω ∈ Q(p, n) : | holω(h1)| < | holω(h2)|}, where
h1, h2 ∈ H1(Mp, Zn; Z). The halfpiece Mh(τ,≺) is the intersection of M(τ,≺) with
the open set {ω ∈ Q(p, n) : holω(h) ∈ R2

+}.
For any mapping class φ ∈ Mod(p, n) let φ∗ denote the induced automorphism

of H1(Mp, Zn; Z). φ acts on Q(p, n) so that any M(τ) is mapped onto M(τ)φ−1 =
M(φτ). A Delaunay triangulation piece M(τ,≺) is mapped onto M(φτ,≺′), where
by definition e1 ≺′ e2 if and only if φ−1

∗ e1 ≺ φ−1
∗ e2. A halfpiece Mh(τ,≺) is mapped

onto Mφ∗h(φτ,≺′). Suppose Mh(τ,≺)φ−1 = Mh(τ,≺). Then φ permutes homo-
topy classes of edges of τ . Moreover, φ∗h0 = ±h0 for any homology class h0 of an
edge. Since φ is orientation-preserving and homology classes of edges of τ generate
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H1(Mp, Zn; Z), it follows that φ∗ is the multiplication by 1 or −1. As φ∗h = h, φ∗

is the identity. Let ω0 ∈ Ω(p, n) be a translation structure whose isotopy class is
in Mh(τ,≺). By the above there exists φ0 ∈ φ that maps each Delaunay cell of ω0

onto another Delaunay cell in an affine way. φ0 maps each Delaunay edge onto a
homologous one, hence φ0 is an automorphism of ω0. Let e1 and e2 be two Delaunay
edges of ω0 bounding the same triangle. If φ0(e1) 6= e1 then the edges e1 and φ0(e1)
divide the surface Mp into two parts. It is easy to see that the edges e2 and φ0(e2)
are contained in different parts. None of the latter divides the part it belongs to.
As a consequence, e2 and φ0(e2) are not homologous as they should be. This con-
tradiction implies φ0 fixes all Delaunay edges of ω0. Then φ0 is the identity while φ
is the trivial mapping class. It follows that the halfpiece Mh(τ,≺) is disjoint from
Mh(τ,≺)φ−1 for any nontrivial φ ∈ Mod(p, n), i.e., π0 is injective on Mh(τ,≺).

Let U1 denote the subset of Q(p, n) corresponding to translation structures whose
Delaunay partitions are not triangulations. Let us show that U1 has zero volume.
Take any τ ∈ T (p, n) and pick an edge e of τ (edges of τ are determined up to
homotopy). By U1(τ, e) denote the set of ω ∈ N(τ) such that each Delaunay edge
is an edge of τ but there is no Delaunay edge homotopic to e. U1 is the union
of countably many sets of the form U1(τ, e), hence it is sufficient to prove that
any of them has zero volume. Let ω′ be a translation structure in an isotopy class
ω ∈ U1(τ, e) and τ ′ be a partition of Mp such that (ω′, τ ′) ∈ τ . Let e0 be an edge of τ ′

homotopic to e. Let T1 and T2 be triangles of τ ′ bounded by e0. Then the union of T1,
T2, and the interior of e0 is isometric to an inscribed quadrilateral. Let e1 be a side
of T1 different from e0 and e2 be a side of T2 different from e0 and not parallel to e1.
If e0, e1, and e2 do not divide the surface, then their homology classes are elements
of a basis for H1(Mp, Zn; Z) by Lemma 6.2. Once holonomy vectors holω(e0) and
holω(e1) are fixed, the holonomy vector holω(e2) lies on a fixed circle in R2 passing
through the origin. Hence Fubini’s theorem implies U1(τ, e) has zero volume. If e0,
e1, and e2 do divide the surface, it is easy to observe that e2 is homologous to the
side of T1 different from e0 and e1. Then T1 and T2 are isometric triangles and their
angles opposite e0 are right. It follows that holω(e1) lies on a circle depending on
holω(e0). Since e0 and e1 do not divide Mp, Lemma 6.2 and Fubini’s theorem imply
again U1(τ, e) has zero volume.

Let U2 denote the set of ω ∈ Q(p, n) such that | holω(γ1)| = | holω(γ2)| for some
disjoint nonhomologous saddle connections γ1 and γ2 of a translation structure in
the isotopy class ω. By Lemma 6.2, homology classes of γ1 and γ2 are linearly
independent. By Lemma 7.1 (see Section 7 below), U2 has zero volume. Let U3

denote the set of ω ∈ Q(p, n) such that holω(h) is horizontal for a nonzero h ∈
H1(Mp, Zn; Z). U3 is the union of countably many codimension 1 affine submanifolds
of Q(p, n), hence it is of zero volume.

Since the Mod(p, n) action on T (p, n) has only finitely many orbits, there exist
τ1, . . . , τk ∈ T (p, n) such that π0 maps the union of M(τ1), . . . ,M(τk), and U1 onto
MQ(p, n). For any τ ∈ T (p, n) the set M(τ) is the union of finitely many Delaunay
triangulation pieces and a subset of U2, while each piece M(τ,≺) is the union of
two halfpieces and a subset of U3. Since U1 ∪ U2 ∪ U3 is a set of zero volume, there
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exist finitely many halfpieces P1, . . . , Pl such that π0(P1 ∪ . . . ∪ Pl) is a subset of
MQ(p, n) of full volume. By the above any π0(Pi) and π0(Pj) either are disjoint or
coincide. Therefore it is no loss to assume that sets π0(P1), . . . , π0(Pl) are disjoint.
Then P1, . . . , Pl are also disjoint and π0 is injective on P1 ∪ . . . ∪ Pl.

Let ω = {(Uα, φα)}α∈A be a translation structure on Mp. For any operator g ∈
GL+(2,R) the atlas gω = {(Uα, gφα)}α∈A is a translation structure on Mp with the
same singular points of the same multiplicities as ω. Although the flat metrics on Mp

induced by translation structures ω and gω need not coincide, they share the same
geodesics. If g ∈ SL(2,R) then ω and gω induce the same measure on Mp. The map
GL+(2,R)×Ω(p, n) ∋ (g, ω) 7→ gω defines an action of the group GL+(2,R) on the
set Ω(p, n). Obviously, this action commutes with the action of H(p, n). Therefore
the action of GL+(2,R) descends to actions on the spaces Q(p, n) and MQ(p, n). The
action of the group GL+(2,R) on Q(p, n) commutes with the action of Mod(p, n).
Since holgω(γ) = g holω(γ) for any g ∈ GL+(2,R), ω ∈ Ω(p, n), and any path γ,
it follows that the GL+(2,R) action on Q(p, n) is affine and continuous. Moreover,
the action of the subgroup SL(2,R) preserves the volume element. The action of
GL+(2,R) on MQ(p, n) is also continuous and the action of SL(2,R) on MQ(p, n)
is also volume preserving. For any τ ∈ T (p, n) the set N(τ) is invariant under the
GL+(2,R) action on Q(p, n). The GL+(2,R) action on MQ(p, n) leaves invariant
every stratum H(α) ⊂ MQ(p, n) and every connected component of MQ(p, n).

The group R+ acts naturally on translation structures by scaling distances. We
define actions of R+ on the sets Ω(p, n), Q(p, n), and MQ(p, n) by regarding R+ as
a subgroup of GL+(2,R).

For any ω ∈ Ω(p, n), let a(ω) denote the area of the surface Mp with respect to
the measure induced by ω. Since a(tω) = t2a(ω) for any t > 0, every translation
structure ω ∈ Ω(p, n) is uniquely represented as tω1, where a(ω1) = 1 and t ∈ R+.
The area a(ω) does not change when we replace ω by an isomorphic translation
structure. By Q1(p, n) and MQ1(p, n) denote the subsets of Q(p, n) and MQ(p, n),
respectively, corresponding to translation structures ω such that a(ω) = 1. Let us
consider a as a function on Q(p, n). Then it follows from the proof of Lemma 6.1 that
a(ω) is locally a quadratic form of the vector dev(ω) ∈ H1(Mp, Zn; R2). Hence the
set Q1(p, n) = a−1(1) is a real analytic submanifold of Q(p, n) of codimension 1. This
submanifold is invariant under the actions of Mod(p, n) and SL(2,R). The volume
element on Q(p, n) along with the vector field grad a induce a volume element on
Q1(p, n). Let µ̃ and µ̃0 be the Borel measures on Q(p, n) and Q1(p, n), respectively,
induced by the volume elements. Then

µ̃0(U) = 2N · µ̃({tω | ω ∈ U, 0 < t ≤ 1})

for any Borel set U ⊂ Q1(p, n). The action of Mod(p, n) on Q1(p, n) is properly dis-
continuous and volume preserving, therefore the quotient space MQ1(p, n) inherits
the structure of a real analytic orbifold along with a volume element. MQ1(p, n) is
a suborbifold of MQ(p, n) invariant under the action of SL(2,R). Each connected
component of MQ1(p, n) is of the form C ∩ MQ1(p, n), where C is a connected
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component of MQ(p, n). By µ0 denote the Borel measure on MQ1(p, n) induced by
the volume element. Let π0 : Q(p, n) → MQ(p, n) be the natural projection. Then
µ0(π0(U)) = µ̃0(U) for any Borel set U ⊂ Q1(p, n) such that π0 is injective on U .
The measure µ0 is invariant under the SL(2,R) action on MQ1(p, n).

Theorem 6.6 ([V2], [MS]) µ0(MQ1(p, n)) <∞.

Theorem 6.7 ([V1]) The SL(2,R) action on MQ1(p, n) is ergodic with respect to
the measure µ0 on each connected component of MQ1(p, n).

Now we shall define the moduli space MY(p, n) of pairs (M,x) such that M is a
translation surface of genus p with n singular points and x ∈M . The maps H(p, n)×
Ω(p, n) ×Mp ∋ (f, ω, x) 7→ (ωf−1, f(x)) and SL(2,R) × Ω(p, n) ×Mp ∋ (g, ω, x) 7→
(gω, x) define commuting actions of the groups H(p, n) and SL(2,R) on the set
Ω(p, n) ×Mp. Let Y(p, n) = (Ω(p, n) ×Mp)/H0(p, n) and MY(p, n) = (Ω(p, n) ×
Mp)/H(p, n). Let p̃0 : Y(p, n) → Q(p, n) and p0 : MY(p, n) → MQ(p, n) be the
natural projections. The group Mod(p, n) acts naturally on Y(p, n) and MY(p, n) =
Y(p, n)/Mod(p, n). The SL(2,R) action on Ω(p, n) × Mp descends to actions on
Y(p, n) and MY(p, n).

Let τ ∈ T (p, n). Take a translation structure ω0 ∈ Ω(p, n) that admits a tri-
angulation τ0 in the class τ . For any ω ∈ N(τ) there exists a unique translation
structure Xω0,τ0(ω) in the isotopy class ω such that the identity map of Mp is
affine on each triangle of τ0 in local coordinates of the atlases ω0 and Xω0,τ0(ω),
that is, for any triangle T of τ0 there are a map f : T → R2 and an affine map
b : R2 → R2 such that (T, f) ∈ ω0 and (T, bf) ∈ Xω0,τ0(ω). For any ω ∈ N(τ)
and x ∈ Mp define Yω0,τ0(ω, x) ∈ Y(p, n) to be the H0(p, n)-orbit of the pair
(Xω0,τ0(ω), x) ∈ Ω(p, n)×Mp. Then the map Yω0,τ0 : N(τ)×Mp → Y(p, n) is injective
and Yω0,τ0(N(τ)×Mp) = p̃−1

0 (N(τ)). The collection of maps Yω0,τ0 , (ω0, τ0) ∈ T (p, n),
endows Y(p, n) with the structure of a fiber bundle over Q(p, n) with the fiber Mp.

The action of the group Mod(p, n) on Y(p, n) is properly discontinuous, therefore
the quotient space MY(p, n) inherits the quotient topology. For any ω ∈ MQ(p, n)
the following conditions are equivalent: (i) translation structures in the isomorphy
class ω have no automorphisms different from the identity; (ii) for any ω̃ ∈ π−1

0 (ω)
the restriction of the projection π0 to some neighborhood of ω̃ is a homeomorphism.
Let U0 be the set of ω ∈ MQ(p, n) satisfying these conditions. U0 is an open
dense subset of MQ(p, n) of full volume. The set p−1

0 (U0) ⊂ MY(p, n) is a fiber
bundle over U0 with the fiber Mp. Suppose ω ∈ MQ(p, n) \ U0 and ω0 ∈ ω; then
p−1

0 (ω) is homeomorphic toMp/Aut(ω0). Slightly abusing notation, we shall consider
MY(p, n) as a fiber bundle over MQ(p, n) with the fiber Mp (even though some
fibers may be not homeomorphic to Mp).

The group SL(2,R) acts on the spaces Y(p, n) and MY(p, n) by homeomor-
phisms. The subspaces Y1(p, n) = p̃−1

0 (Q1(p, n)) and MY1(p, n) = p−1
0 (MQ1(p, n))

are invariant under these actions. Note that each connected component of MY1(p, n)
is of the form p−1

0 (C), where C is a connected component of MQ1(p, n).
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For any ω0 ∈ Ω(p, n), let ξω0 be the Borel measure on Mp induced by the trans-
lation structure ω0. Let ω be the isotopy class of ω0. The map hω0 : Mp → p̃−1

0 (ω)
defined by the relation (ω0, x) ∈ hω0(x), x ∈Mp, is a homeomorphism. The measure
ρ̃ω = ξω0h

−1
ω0

on the fiber p̃−1
0 (ω) does not depend on the choice of ω0 ∈ ω. Likewise,

for any ω ∈ MQ(p, n) the measures on Mp induced by translation structures in the
isomorphy class ω define a Borel measure ρω on p−1

0 (ω) (even if the fiber p−1
0 (ω) is not

homeomorphic to Mp). The space Y1(p, n), which is a fiber bundle over Q1(p, n) with
the fiberMp, carries a natural measure µ̃1 that is the measure µ̃0 on the base Q1(p, n)
and is the measure ρ̃ω on the fiber p̃−1

0 (ω). In other words, dµ̃1(η) = dρ̃ω(η) dµ̃0(ω).
Similarly, the space MY1(p, n) carries a natural measure µ1 such that dµ1(η) =
dρω(η) dµ0(ω). Notice that µ1(MY1(p, n)) = µ0(MQ1(p, n)) < ∞. The measure µ1

is invariant under the action of the group SL(2,R) on MY1(p, n).

Theorem 6.8 ([EM]) The SL(2,R) action on MY1(p, n) is ergodic with respect
to the measure µ1 on each connected component of MY1(p, n).

7 Periodic geodesics

Let M be a translation surface. Any geodesic joining a nonsingular point of M to
itself is periodic (or closed) since it cannot change its direction. We only consider
primitive periodic geodesics, that is, a periodic geodesic is a simple closed curve.
Each unoriented periodic geodesic corresponds to two oriented periodic geodesics of
the same length and of opposite directions. If a geodesic starting at a point x ∈M is
periodic, then all geodesics starting at nearby points in the same direction are also
periodic. Actually, each periodic geodesic belongs to a family of freely homotopic
periodic geodesics of the same length and direction. If M is a torus without singular
points, then this family fills the whole surface M . Otherwise the family fills a domain
homeomorphic to an annulus. This domain is called a cylinder of periodic geodesics
(or simply a periodic cylinder) since it is isometric to a cylinder R/lZ×(0, w), where
l, w > 0. The number l is called the length or the waist of the periodic cylinder; it
is equal to the length of periodic geodesics in the cylinder. w is called the width or
the height of the cylinder. The cylinder is bounded by saddle connections parallel
to its geodesics. The boundary of the cylinder is a union of two components. If
geodesics in the cylinder are oriented then we can refer to them as the left and
the right components. If M is a translation torus with one singular point then both
components coincide and consist of a single saddle connection. Otherwise the left and
the right components are different although they may share some saddle connections.
A periodic cylinder is called regular if each component of its boundary consists of a
single saddle connection or, equivalently, if bounding saddle connections are of the
same length as periodic geodesics in the cylinder.

Each cylinder of unoriented periodic geodesics corresponds to two oriented peri-
odic cylinders, i.e., cylinders of oriented periodic geodesics. By definition, the direc-
tion and the holonomy vector of an oriented periodic cylinder are the direction and
the holonomy vector of an arbitrary periodic geodesic in the cylinder.
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This section is devoted to the proofs of statements formulated in Section 1. We
begin with Propositions 1.3 and 1.4.

Lemma 7.1 (a) Let h1, h2 ∈ H1(Mp, Zn; Z) be relative homology classes that are
not multiples of the same homology class. Then for almost all q ∈ H1(Mp, Zn; R2)
vectors q(h1), q(h2) ∈ R2 have different lengths and directions.

(b) Let h′1, h
′
2 ∈ H1(Mp, Zn; Z) be another pair of relative homology classes. Let Λ

be the euclidean area form on R2. Then Λ(q(h′1), q(h
′
2)) 6= Λ(q(h1), q(h2)) for almost

all q ∈ H1(Mp, Zn; R2) unless h′1 = b11h1 + b12h2 and h′2 = b21h1 + b22h2, where
bij ∈ Q, b11b22 − b12b21 = 1.

Proof. Since h1 and h2 are not multiples of the same homology class, there exist
h3, . . . , hN ∈ H1(Mp, Zn; Z),N = 2p+n−1, such that h1, . . . , hN is a basis for a finite
index subgroup of H1(Mp, Zn; Z). Then H1(Mp, Zn; R2) ∋ q 7→ (q(h1), . . . , q(hN)) ∈
(R2)N is an isomorphism of vector spaces. The set of pairs (v1, v2) ∈ (R2)2 such that
v1 = 0 or v2 = 0 or vectors v1 and v2 have the same length or direction is of zero
Lebesgue measure. By Fubini’s theorem, for almost all q ∈ H1(Mp, Zn; R2) vectors
q(h1) and q(h2) are nonzero vectors of different length and direction.

Any h′1, h
′
2 ∈ H1(Mp, Zn; Z) are uniquely represented as h′1 = b11h1 + · · ·+ b1NhN

and h′2 = b21h1+· · ·+b2NhN , where bij ∈ Q. Since Λ(q(h1), q(h2)) and Λ(q(h′1), q(h
′
2))

are quadratic forms of a vector q ∈ H1(Mp, Zn; R2), we have either Λ(q(h′1), q(h
′
2)) 6=

Λ(q(h1), q(h2)) for almost all q or Λ(q(h′1), q(h
′
2)) = Λ(q(h1), q(h2)) for all q. In

the latter case it follows that bij = 0 for j ≥ 3, that is, h′1 = b11h1 + b12h2 and
h′2 = b21h1 + b22h2. Then Λ(q(h′1), q(h

′
2)) = (b11b22 − b12b21)Λ(q(h1), q(h2)) for any

q. For almost all q vectors q(h1) and q(h2) are nonzero and of different directions,
hence Λ(q(h1), q(h2)) 6= 0. This implies b11b22 − b12b21 = 1.

Proof of Propositions 1.3 and 1.4(a). Suppose U ⊂ Mp is a domain bounded
by disjoint saddle connections of a translation structure ω ∈ Ω(p, n). Let γ1, . . . , γk

be boundary saddle connections that are not slits, i.e., not surrounded by U . The
orientation of Mp induces orientations of γ1, . . . , γk. Assuming these orientations,
the sum of the relative homology classes of γ1, . . . , γk in H1(Mp, Zn; Z) is equal to
zero. In particular, holω(γ1)+ · · ·+holω(γk) = 0. The above argument easily implies
that saddle connections belonging to the same component of boundary of a periodic
cylinder do not divide the surface.

Let [γ] ∈ H1(Mp, Zn; Z) be the relative homology class of a saddle connection γ
of some ω ∈ Ω(p, n). By Lemma 6.2, [γ] is an element of a basis for H1(Mp, Zn; Z).
In particular, if [γ] = bh for some h ∈ H1(Mp, Zn; Z) and b ∈ Z then b = ±1. It
follows that homology classes of distinct saddle connections γ, γ′ of ω are multiples
of the same homology class only if γ and γ′ are homologous, i.e., they are disjoint and
divide the surface Mp. Then Lemma 7.1(a) implies that for a generic translation sur-
face any nonhomologous saddle connections are of different length and direction. By
the above the boundary of any irregular periodic cylinder contains nonhomologous
saddle connections, which are parallel. Therefore generic translation surfaces admit
only regular periodic cylinders. Two periodic geodesics in different regular cylinders
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are homologous if and only if saddle connections bounding these cylinders are ho-
mologous. Since boundary saddle connections have the same length and direction
as periodic geodesics in the cylinder, it follows that for a generic translation surface
any nonhomologous periodic geodesics are of different length and direction.

Proof of Proposition 1.4(b). Suppose C is a regular periodic cylinder of a
translation structure ω ∈ Ω(p, n), where (p, n) 6= (1, 1). Let γ be a saddle connection
bounding C. Let γ′ be a saddle connection that crosses C from one side to another
and does not leave the cylinder. By Λ denote the euclidean area form on R2. Then
the area of C is equal to |Λ(holω(γ), holω(γ′))|. Clearly, γ and γ′ are disjoint and
do not divide the surface. By Lemma 6.2, there exist saddle connections γ3, . . . , γN

(N = 2p + n − 1) such that γ, γ′, γ3, . . . , γN are also disjoint and do not divide
the surface. The relative homology classes [γ], [γ′], [γ3], . . . , [γN ] comprise a basis for
H1(Mp, Zn; Z). Let C1 be a periodic cylinder of ω different from C. Let L be a
periodic geodesic in C1 and L′ be a saddle connection crossing C1. Then the area
of C1 is equal to |Λ(holω(L), holω(L′))|. Since (p, n) 6= (1, 1) and C is a regular
cylinder, the geodesic L is not contained in the closure of C. If L is disjoint from C
then its homology class [L] is a linear combination of [γ], [γ3], . . . , [γN ]. Otherwise
L is freely homotopic to the sum of saddle connections L1, L

′
1, . . . , Lk, L

′
k such that

L1, . . . , Lk are disjoint from C while L′
1, . . . , L

′
k are contained in the closure of C. The

relative homology classes of L1, . . . , Lk are linear combinations of [γ], [γ3], . . . , [γN ]
while the relative homology classes of L′

1, . . . , L
′
k are linear combinations of [γ] and

[γ′]. Note that projections of holonomy vectors holω(Li), holω(L′
i), i = 1, . . . , k, on

the direction orthogonal to γ are all nonzero and of the same sign. It follows that
the sum of homology classes of L1, . . . , Lk is not a multiple of [γ]. Thus [L] can be a
linear combination of [γ] and [γ′] only if it is a multiple of [γ]. But then the cylinders
C and C1 are parallel and disjoint, hence the homology class of L′ is not a linear
combination of [γ] and [γ′].

By the above and Lemma 7.1(b), for a translation surface in a generic isomorphy
class ω ∈ MQ(p, n), (p, n) 6= (1, 1), all regular periodic cylinders are of different
area. It remains to recall that generic translation surfaces do not contain irregular
cylinders.

We proceed to the proofs of Theorems 1.5–1.10. Let M be a translation surface
of genus p with n singular points (p, n ≥ 1). We assign to M a sequence V1(M) of
vectors in R2. These are the holonomy vectors of oriented periodic cylinders on M .
Note that any (unoriented) periodic cylinder corresponds to two oriented cylinders
with opposite holonomy vectors. Both vectors are supposed to be in the sequence. If
a vector is the holonomy vector of k > 1 distinct periodic cylinders, it is to appear
k times in V1(M). By Theorem 1.1(c), the sequence V1(M) tends to infinity. To
make V1(M) an element of the set V defined in Section 3, we have to equip vectors
with weights. Let all weights be equal to 1. Another choice is to let the weight of
the holonomy vector of a cylinder be equal to the area of the cylinder. Then we
obtain a different element of V that is denoted by V2(M). Further, for any x ∈ M
we define V3(M,x) ∈ V to be the sequence of holonomy vectors of oriented periodic
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geodesics on M passing through the point x. By definition, all weights of V3(M,x)
are equal to 1. Now the growth functions N1, N2, N3, and N4 defined in Section 1
can be expressed as follows: N1(M,R) = NV1(M)(R)/2, N2(M,R) = NV2(M)(R)/2,
N3(M,x,R) = NV3(M,x)(R)/2, and N4(M,σ,R) = NW(σ,∞)V2(M)(R)/2 for all R > 0.

Let C be a connected component of MQ1(p, n). Let p0 : MY(p, n) → MQ(p, n)
be the natural projection. Then Y = p−1

0 (C) is a connected component of MY1(p, n).
The sequences V1(M) and V2(M) do not change when M is replaced by an isomor-
phic translation surface. The sequence V3(M,x) does not change when (M,x) is
replaced by a pair representing the same equivalence class in MY(p, n). Hence the
assignments M 7→ V1(M), M 7→ V2(M), and (M,x) 7→ V3(M,x) give rise to well-
defined maps V1 : C → V, V2 : C → V, and V3 : Y → V . Recall that there are
continuous actions of the group SL(2,R) on C and Y . By Theorems 6.6 and 6.7, the
Borel measure µ0 induced by the canonical volume element on C is finite and the
SL(2,R) action on C is ergodic relative to this measure. The measure µ1 on Y is
also finite and the SL(2,R) action on Y is ergodic by Theorem 6.8. Thus the results
of Sections 3 and 4 apply to the maps V1, V2, and V3. Let us check whether the
conditions formulated in Sections 3 and 4 hold for these maps.

Proposition 7.2 The maps V1, V2, and V3 satisfy conditions (0), (A), (B ′), (C),
and (E). The map V2 satisfies condition (0 ′).

Proof. By definition of the SL(2,R) actions on C, Y , and V , the maps V1, V2, and
V3 satisfy condition (A). Condition (E) holds trivially.

Let S(p, n) be the set of free homotopy classes of simple closed oriented curves
in Mp \Zn. Given γ ∈ S(p, n), let U(γ) ⊂ Ω(p, n) be the set of translation structures
that admit a periodic geodesic in the homotopy class γ. By U1(γ) denote the set
of pairs (ω, x) ∈ Ω(p, n) ×Mp such that some periodic geodesic of the translation
structure ω passing through the point x is in the homotopy class γ. Given ω ∈ U(γ),
all periodic geodesics of ω that belong to the homotopy class γ comprise one periodic
cylinder. Let aγ(ω) denote the area of this cylinder. For any ω /∈ U(γ) let aγ(ω) = 0.
The sets U(γ) and U1(γ) are invariant under the H0(p, n) actions on Ω(p, n) and
Ω(p, n) ×Mp, respectively. Therefore we consider U(γ) as a subset of Q(p, n) and
U1(γ) as a subset of Y(p, n). It is easy to see that U(γ) and U1(γ) are open sets.
The map Q(p, n) ∋ ω 7→ holω(γ) ∈ R2 is well-defined and continuous. aγ descends
to a function on Q(p, n), which is also continuous. Indeed, let ω0 ∈ U(γ) and ω′

0

be a translation structure in the isotopy class ω0. Take a saddle connection γ1 of
ω′

0 that crosses the cylinder of periodic geodesics with homotopy γ and does not
leave this cylinder. Let [γ1] ∈ H1(Mp, Zn; Z) be the homology class of γ1. Then
aγ(ω0) = |Λ(holω0(γ), holω0([γ1]))|, where Λ is the euclidean area form on R2. If the
cylinder is regular then aγ(ω) = |Λ(holω(γ), holω([γ1]))| for all ω ∈ Q(p, n) in a
neighborhood of ω0. In the general case aγ(ω) ≤ |Λ(holω(γ), holω([γ1]))| but we can
choose several saddle connections γ1, . . . , γk of ω′

0 so that

aγ(ω) = min
1≤j≤k

|Λ(holω(γ), holω([γj]))|
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for all ω close to ω0.
Let π0 : Q(p, n) → MQ(p, n), π1 : Y(p, n) → MY(p, n), and p̃0 : Y(p, n) →

Q(p, n) be the canonical projections. Then for any ω ∈ π−1
0 (C), η ∈ π−1

1 (Y ), ψ ∈
Cc(R

2), and f ∈ Cc(R
+) we have

Φ[V1(π0(ω))](ψ) =
∑

γ∈S(p,n)

χU(γ)(ω)ψ(holω(γ)),

Ψ[V2(π0(ω))](f, ψ) =
∑

γ∈S(p,n)

f(aγ(ω))ψ(holω(γ)),

Φ[V3(π1(η))](ψ) =
∑

γ∈S(p,n)

χU1(γ)(η)ψ(holp̃0(η)(γ)).

All three sums are locally finite. It follows that the functions π−1
0 (C) ∋ ω 7→

Φ[V1(π0(ω))](ψ) and π−1
1 (Y ) ∋ η 7→ Φ[V3(π1(η))](ψ) are Borel, while the func-

tion π−1
0 (C) ∋ ω 7→ Ψ[V2(π0(ω))](f, ψ) is continuous. Then the functions C ∋

ω 7→ Φ[V1(ω)](ψ) and Y ∋ η 7→ Φ[V3(η)](ψ) are also Borel and the function
C ∋ ω 7→ Ψ[V2(ω)](f, ψ) is also continuous. Thus the maps V1 and V3 satisfy con-
dition (0) while the map V2 satisfies condition (0′′). By Lemma 4.2, V2 satisfies
conditions (0) and (0′) as well.

For any ω ∈ C, let s(ω) denote the length of the shortest saddle connection
of translation structures in the class ω. The function ω 7→ s(ω) is continuous and
bounded on C. Therefore the upper estimate in Theorem 1.2(c) implies the map V1

satisfies condition (B′). To verify condition (C), we need the following theorem.

Theorem 7.3 ([EM]) (a) Given ǫ > 0, there exist Cǫ > 0 and κ > 0 such that

NV1(ω)(R) ≤ Cǫ

(
R

s(ω)

)1+ǫ

for any R < κ and any ω ∈ C.
(b) For any β ∈ [1, 2) the function s−β belongs to the space L1(C, µ0).

Theorem 7.3 implies that condition (C) holds for the map V1. Let ω ∈ C. By
definition, NV2(ω)(R) ≤ NV1(ω)(R) for any R > 0, and NV3(η)(R) ≤ NV1(ω)(R) for any
η ∈ p−1

0 (ω) and any R > 0. It follows that conditions (B′) and (C) are satisfied by
the maps V2 and V3 whenever these conditions are satisfied by V1.

Proof of Theorems 1.5, 1.6(a), and 1.7. By Proposition 7.2, the maps V1,
V2, and V3 satisfy conditions (0), (A), (B), and (C). Let c1(C), c2(C), and c3(C) be
nonnegative numbers such that 2π−1c1(C), 2π−1c2(C), and 2π−1c3(C) are the Siegel-
Veech constants of the pairs (V1, µ0), (V2, µ0), and (V3, µ1), respectively. By Part II
of Theorem 3.2, for µ0-almost every ω ∈ C we have

lim
R→∞

NV1(ω)(R)/R2 = 2c1(C), (8)

lim
R→∞

NV2(ω)(R)/R2 = 2c2(C), (9)
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and for µ1-almost every η ∈ Y ,

lim
R→∞

NV3(η)(R)/R2 = 2c3(C). (10)

The positivity of c1(C) and c2(C) follows from Proposition 3.3 and Theorem 1.1(a).
Let us show that c3(C) = c2(C). By Part I of Theorem 3.2, we have

1

µ0(C)

∫

C

NV2(ω)(1) dµ0(ω) = 2c2(C),

1

µ1(Y )

∫

Y

NV3(η)(1) dµ1(η) = 2c3(C).

For any ω ∈ C, let ρω denote the Borel measure on the fiber p−1
0 (ω) induced by

translation structures in the equivalence class ω. It is easy to observe that

NV2(ω)(R) =

∫

p−1
0 (ω)

NV3(η)(R) dρω(η)

for all R > 0. Then
∫

Y

NV3(η)(1) dµ1(η) =

∫

C

∫

p−1
0 (ω)

NV3(η)(1) dρω(η) dµ0(ω) =

∫

C

NV2(ω)(1) dµ0(ω),

besides,

µ1(Y ) =

∫

C

ρω(p−1
0 (ω)) dµ0(ω) = µ0(C).

Hence, c3(C) = c2(C).
By the above there exists a Borel set U ⊂ C, µ0(U) = µ0(C), such that for any

ω ∈ U the relations (8) and (9) hold, and, moreover, the relation (10) holds for ρω-
almost all η ∈ p−1

0 (ω). Let M be a translation surface in an isomorphy class ω ∈ U .
Then N1(M,R)/R2 → c1(C) and N2(M,R)/R2 → c2(C) as R → ∞, and for almost
all x ∈M , N3(M,x,R)/R2 → c2(C) as R → ∞.

To prove Theorems 1.6(b), 1.8, and 1.9, we need the following proposition, which
will be proved in Section 8.

Proposition 7.4 For any σ ∈ [0, 1) and ǫ > 0 let

b(σ, ǫ) =
1

µ0(C)

∫

C

NW(σ,∞)V2(ω)(ǫ) dµ0(ω). (11)

Then for any σ ∈ [0, 1),

lim
ǫ→0

b(σ, ǫ)

b(0, ǫ)
= (1 − σ)mC−1,

where mC = 2p− 2 + n.
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Proof of Theorems 1.6(b) and 1.8. By Proposition 7.2, the map V2 satisfies
conditions (0′), (A), and (B), hence Proposition 4.3 applies to it. Let λ be the
Siegel-Veech measure of the pair (V2, µ0). Since the map V1 = W(0,∞)V2 satisfies
condition (B), λ is a finite measure on R+. For any a ≥ 0 the Siegel-Veech constant of
(W(a,∞)V2, µ0) is equal to λ((a,∞)). By Part I of Theorem 3.2, b(a, ǫ) = πǫ2λ((a,∞))
for all ǫ > 0 and a ∈ [0, 1). Then it follows from Proposition 7.4 that λ((a,∞)) =
(1 − a)mC−1λ(R+) for all a ∈ [0, 1). For any ω ∈ C the sequence V2(ω) contains no
vectors with weights greater than 1, therefore λ((1,∞)) = 0. Let c0 be the Siegel-
Veech constant of (V2, µ0). If mC = 1 then λ({1}) = λ(R+), hence c0 = λ(R+). If
mC > 1 then

c0 =

∫ ∞

0

t dλ(t) = −λ(R+)

∫ 1

0

t d(1 − t)mC−1 = λ(R+)/mC.

By Part II of Theorem 3.2, for any a ∈ [0, 1) we have

lim
R→∞

NW(a,∞)V2(ω)(R)/R2 = π(1 − a)mC−1λ(R+) (12)

for µ0-almost all ω ∈ C. Also, for µ0-almost all ω ∈ C,

lim
R→∞

NV2(ω)(R)/R2 = πm−1
C λ(R+). (13)

Let U ⊂ C be a Borel set such that µ0(U) = µ0(C), the relation (13) holds for
any ω ∈ U , and the relation (12) holds for any ω ∈ U and any rational a ∈ [0, 1).
Since NW(a,∞)V2(ω)(R) is a nonincreasing function of a, it follows that the relation
(12) holds for any ω ∈ U and any a ∈ [0, 1). Let M be a translation surface in an
isomorphy class ω ∈ U . Then N2(M,R)/R2 → πm−1

C λ(R+)/2 as R → ∞, and for
any a ∈ [0, 1), N4(M,a,R)/R2 → π(1 − a)mC−1λ(R+)/2 as R → ∞. By Theorems
1.5 and 1.6(a), πλ(R+)/2 = c1(C) and πm−1

C λ(R+)/2 = c2(C). It follows that c2(C) =
c1(C)/mC.

Proof of Theorems 1.9 and 1.10. By Proposition 7.2, the map V2 satisfies
conditions (0′), (A), (B), (C), and (E). Besides, the Siegel-Veech constant of (V2, µ0)
is nonzero and the mapW(0,∞)V2 = V1 satisfies condition (B). Therefore Propositions
4.4 and 4.6 apply to V2. Let λ be the Siegel-Veech measure of the pair (V2, µ0). As
shown in the previous proof, λ((a,∞)) = (1 − a)mC−1λ(R+) for any a ∈ [0, 1) and
λ((1,∞)) = 0. In particular, we can consider λ as a Borel measure on [0, 1]. Then the
normalized measure (λ(R+))−1λ coincides with the measure λmC

defined in Section
1. Since for any ω ∈ C the sequence V2(ω) contains no vectors with weights greater

than 1, we can consider the measures α̃V2(ω),R and D̃V2(ω),R defined in Section 4 as
measures on [0, 1] and S1 × [0, 1], respectively. Then it follows from Propositions
4.4 and 4.6 that for µ0-almost all ω ∈ C we have the following weak convergence of
measures:

lim
R→∞

α̃V2(ω),R = λmC
,

lim
R→∞

D̃V2(ω),R = m1 × λmC
.
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The maps V1 and V3 satisfy conditions (0), (A), (B), (C), and (E). The Siegel-
Veech constants of the pairs (V1, µ0) and (V3, µ1) are nonzero. Then Proposition 4.5
implies that for µ0-almost all ω ∈ C and for µ1-almost all η ∈ Y the measures δ̃V1(ω),R

and δ̃V3(η),R on S1 weakly converge to normalized Lebesgue measure m1 as R → ∞.
By the above there exists a Borel set U ⊂ C, µ0(U) = µ0(C), such that for any

ω ∈ U the measures α̃V2(ω),R, δ̃V1(ω),R, and D̃V2(ω),R weakly converge to λmC
, m1, and

m1 × λmC
, respectively, as R → ∞, and for ρω-almost all η ∈ p−1

0 (ω) the measures
δ̃V3(η),R weakly converge to m1 as R → ∞. Let M be a translation surface in an

isomorphy class ω ∈ U . Then the measures α̃M,R, δ̃M,R, and D̃M,R defined in Section

1 coincide with α̃V2(ω),R, δ̃V1(ω),R, and D̃V2(ω),R, respectively. Further, for any x ∈M

the measure δ̃M,x,R coincides with δ̃V3(η),R, where η ∈ p−1
0 (ω) is the equivalence class

of (M,x). Theorems 1.9 and 1.10 follow.

8 Areas of periodic cylinders

For any positive integer n define sets

Sn = {(t1, . . . , tn) ∈ Rn | ti > 0, t1 + · · · + tn ≤ 1},

S∗
n = {(t, t1, . . . , tn) ∈ Rn+1 | t > 0, ti > 0, t2 + t1 + · · · + tn ≤ 1}.

Further, for any σ ∈ [0, 1) and i ∈ {1, . . . , n} define their subsets

Sn(σ, i) = {(t1, . . . , tn) ∈ Sn | ti > σ(t1 + · · · + tn)},

S∗
n(σ, i) = {(t, t1, . . . , tn) ∈ S∗

n | ti > σ(t2 + t1 + · · · + tn)}.
Note that Sn(0, i) = Sn, S∗

n(0, i) = S∗
n. Now let

Jn,0(σ, i) =

∫

Sn(σ,i)

dt1 . . . dtn

and for any positive integer k,

Jn,k(σ, i) =

∫

S∗
n(σ,i)

dt2k dt1 . . . dtn.

Lemma 8.1 For any integers n > 0 and k ≥ 0, any i ∈ {1, . . . , n}, and any
σ ∈ [0, 1),

Jn,k(σ, i)

Jn,k(0, i)
= (1 − σ)n+k−1.

Proof. Since Jn,k(σ, i) = Jn,k(σ, 1) for any i ∈ {1, . . . , n}, we can assume without
loss of generality that i = 1. The case n = 1, k = 0 is trivial as S1(σ, 1) = S1 for
any σ ∈ [0, 1). Given σ ∈ (0, 1) and b > 0, let

Ib(σ) =

∫ 1

0

(
min(1 − t, t/σ − t)

)b

dt.
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Then

Ib(σ) =

∫ σ

0

(t/σ − t)b dt+

∫ 1

σ

(1 − t)b dt =

1

b+ 1

(
σb+1(σ−1 − 1)b + (1 − σ)b+1

)
=

(1 − σ)b

b+ 1
.

Suppose n > 1 and σ ∈ (0, 1). Then

Jn,0(σ, 1) =

∫ 1

0

dt1

∫

min(1−t1,t1/σ−t1)Sn−1

dt2 . . . dtn = In−1(σ)

∫

Sn−1

dt2 . . . dtn.

Now suppose n > 0 and σ ∈ (0, 1). Then (t, t1, . . . , tn) ∈ S∗
n(σ, 1) if and only if

(t1, . . . , tn) ∈ Sn(σ, 1), t > 0, t ≤ (1−t1−· · ·−tn)1/2, and t < (t1/σ−t1−· · ·−tn)1/2.
Hence for any integer k > 0,

Jn,k(σ, 1) =

∫

Sn(σ,1)

(
min(1, t1/σ) − t1 − · · · − tn

)k

dt1 . . . dtn.

In particular, J1,k(σ, 1) = Ik(σ). If n > 1 then

Jn,k(σ, 1) =

∫ 1

0

dt1

∫

min(1−t1,t1/σ−t1)Sn−1

(
min(1, t1/σ) − t1 − · · · − tn

)k

dt2 . . . dtn =

In+k−1(σ)

∫

Sn−1

(1 − t2 − · · · − tn)k dt2 . . . dtn.

By the above for any integers n > 0 and k ≥ 0 there exists Cn,k > 0 such that
Jn,k(σ, 1) = (1−σ)n+k−1Cn,k for all σ ∈ (0, 1). Since Jn,k(σ, 1) → Jn,k(0, 1) as σ → 0,
it follows that Cn,k = Jn,k(0, 1).

Let ω(n) ∈ Ω(1, n) be a translation structure with n ≥ 1 singular points on the
torus M1 such that for some v ∈ S1 there are n cylinders of periodic geodesics of
ω(n) going in direction v (in general, the number of cylinders may be less than n).
Let x1, . . . , xn be singular points of ω(n) and C1, . . . , Cn be periodic cylinders with
direction v. By Li (1 ≤ i ≤ n) denote the saddle connection going out of xi in
direction v. We assume that the singular points and the cylinders are named so that
Li separates cylinders Ci and Ci−1 (where by definition C0 = Cn) and, furthermore,
Ci lies to the right of Li (with respect to the direction of Li). Let γi be a saddle
connection that crosses the cylinder Ci joining xi to xi+1 (by definition, xn+1 = x1).
Note that the holonomy vector of γi and v induce the standard orientation in R2.
Among all saddle connections that join xi to xi+1 by crossing Ci, only one is disjoint
from γi. Let γ′i denote this saddle connection. It is easy to see that Li, γi, γ

′
i, i =

1, . . . , n, is a maximal set of disjoint saddle connections of ω(n). Let τ (n) ∈ T (1, n) be
the affine equivalence class of the corresponding triangulation. For future references,
we denote by L(n) the relative homotopy class of L1, which is regarded as an edge
of τ (n). For any translation structure in an isotopy class ω ∈ N(τ (n)) there are n
cylinders of homologous periodic geodesics freely homotopic in M1 \ {x1, . . . , xn}
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to geodesics in the cylinders C1, . . . , Cn. Finally, by P (n) denote the set of ω ∈
N(τ (n)) ⊂ Q(1, n) such that for any i, 1 ≤ i ≤ n, we have holω(γi) = bi holω(Li)+vi,
where 0 < bi < 1, vi ∈ R2 is orthogonal to holω(Li), and the pair of vectors vi and
holω(Li) induces the standard orientation in R2.

For any translation structure ω′ on a surface M let a(ω′) denote the area of M
with respect to ω′. For any element ω of Q(p0, n0) or MQ(p0, n0) (p0, n0 ≥ 1) let
a(ω) denote the area of the surface Mp0 with respect to translation structures in
the equivalence class ω. Further, for any translation structure ω′ in an isotopy class
ω ∈ N(τ (n)) and any integer i, 1 ≤ i ≤ n, let ai(ω

′) denote the area of the periodic
cylinder of ω′ homotopic to Ci. The area ai(ω

′) does not depend on the choice of
ω′ ∈ ω and we let ai(ω) = ai(ω

′). Obviously, a1(ω) + · · · + an(ω) = a(ω).
Given U ⊂ R2, let P (n)(U) be the set of ω ∈ P (n) such that holω(L1) ∈ U

and a(ω) ≤ 1. For any i ∈ {1, . . . , n} and any σ ∈ [0, 1) let P
(n)
σ,i (U) be the set of

ω ∈ P (n)(U) such that ai(ω) > σa(ω). Given sets Uj ⊂ Q1(pj, nj), 1 ≤ j ≤ k, let
P (n)(U ;U1, . . . , Uk) denote the set of (ω, ω1, . . . , ωk) ∈ Q(1, n) × Q(p1, n1) × . . . ×
Q(pk, nk) such that ω ∈ P (n)(U), each ωj is represented as tjω

′
j, where ω′

j ∈ Uj and
0 < tj ≤ 1, and a(ω) + a(ω1) + · · ·+ a(ωk) ≤ 1. For any i ∈ {1, . . . , n} and σ ∈ [0, 1)

let P
(n)
σ,i (U ;U1, . . . , Uk) be the set of (ω, ω1, . . . , ωk) ∈ P (n)(U ;U1, . . . , Uk) such that

ai(ω) > σ(a(ω) + a(ω1) + · · · + a(ωk)).

Lemma 8.2 (a) Suppose U ⊂ R2 is a nonempty open bounded set. Then for any
σ ∈ [0, 1) and i ∈ {1, . . . , n},

µ0(P
(n)
σ,i (U))

µ0(P (n)(U))
= (1 − σ)n−1,

where µ0 denotes the canonical measure on Q(1, n).
(b) Suppose U ⊂ R2 and Uj ⊂ Q1(pj, nj), 1 ≤ j ≤ k, are nonempty open sets of

finite measure. Then for any σ ∈ [0, 1) and i ∈ {1, . . . , n},

µ(P
(n)
σ,i (U ;U1, . . . , Uk))

µ(P (n)(U ;U1, . . . , Uk))
= (1 − σ)K−2,

where K = n + 1 +
∑k

j=1(2pj + nj − 1) is half of the dimension of Q(1, n) ×
Q(p1, n1) × . . . × Q(pk, nk) and µ denotes the product of the canonical measures
on Q(1, n),Q(p1, n1), . . . ,Q(pk, nk).

Proof. The homology classes of saddle connections L1, γ1, . . . , γn form a basis
for H1(M1, {x1, . . . , xn}; Z). The map F1 : N(τ (n)) → (R2)n+1 defined by F1(ω) =
(holω(L1), holω(γ1), . . . , holω(γn)) is a volume preserving homeomorphism of N(τ (n))
onto its image. Given a nonzero v ∈ R2, let gv denote a unique element of SL(2,R)
such that gvv = (0, 1) and gvu = (1, 0) for some u orthogonal to v. Define a transfor-
mation F2 of the set (R2 \ {(0, 0)})× (R2)n by F2(v, v1, . . . , vn) = (v, gvv1, . . . , gvvn).
F2 is a homeomorphism preserving Lebesgue measure. Suppose (v, v1, . . . , vn) =
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F2(F1(ω)) for some ω ∈ P (n). Then the first coordinate of the vector vi ∈ R2,
1 ≤ i ≤ n, is equal to ai(ω) while the second coordinate lies between 0 and 1. Finally,
define a map F3 : (R2)n+1 → R2×Rn×Rn by F3((v01, v02), (v11, v12), . . . , (vn1, vn2)) =
((v01, v02), (v11, . . . , vn1), (v12, . . . , vn2)). F3 is a linear map preserving Lebesgue mea-
sure. It is easy to observe that F3 ◦ F2 ◦ F1(P

(n)(U)) = (U \ {(0, 0)}) × Sn × (0, 1)n

while F3◦F2◦F1(P
(n)
σ,i (U)) = (U \{(0, 0)})×Sn(σ, i)×(0, 1)n for all σ and i. Therefore

µ0(P
(n)
σ,i (U))

µ0(P (n)(U))
=

m(U)Jn,0(σ, i)

m(U)Jn,0(0, i)
= (1 − σ)n−1

by Lemma 8.1.
For any t ∈ (0, 1] let U∗

t denote the set of (ω1, . . . , ωk) ∈ Q(p1, n1)×. . .×Q(pk, nk)
such that each ωj is represented as tjω

′
j, where ω′

j ∈ Uj and 0 < tj ≤ 1, and
a(ω1) + · · · + a(ωk) ≤ t2. Since a(tω′) = t2a(ω′) for any translation structure ω′,
it follows that U∗

t = tU∗
1 , where by definition t(ω1, . . . , ωk) = (tω1, . . . , tωk) for all

ωj ∈ Q(pj, nj), 1 ≤ j ≤ k. Denote by µ∗ the product of the canonical measures on
Q(p1, n1), . . . ,Q(pk, nk). Then 0 < µ∗(U∗

1 ) < ∞ and µ∗(U∗
t ) = t2K∗

µ∗(U∗
1 ), where

K∗ =
∑k

j=1(2pj + nj − 1) is half of the dimension of Q(p1, n1) × . . .×Q(pk, nk).

Obviously, P (n)(U ;U1, . . . , Uk) ⊂ P (n)(U) × U∗
1 . Suppose ω ∈ P (n)(U) and ω∗ ∈

U∗
1 . Then (ω, ω∗) ∈ P

(n)
σ,i (U ;U1, . . . , Uk) if and only if ω ∈ P

(n)
σ,i (U) and ω∗ ∈ tU∗

1 for
some t > 0 such that a(ω) + t2 ≤ 1, ai(ω) > σ(a(ω) + t2). It follows that

µ(P
(n)
σ,i (U ;U1, . . . , Uk)) = m(U)µ∗(U∗

1 )Jn,K∗(σ, i)

for all σ and i. Since P
(n)
0,i (U ;U1, . . . , Uk) = P (n)(U ;U1, . . . , Uk), statement (b) of the

lemma follows from Lemma 8.1.

Now we shall define 4 operations on translation surfaces and their equivalence
classes: cutting along parallel saddle connections, gluing along parallel saddle connec-
tions, collapsing a short saddle connection, and inserting a short saddle connection.
In what follows two saddle connections of a translation surface are called homolo-
gous if they are disjoint and break the surface into two parts. Note that homologous
saddle connections are parallel and of the same length.

The cutting operation is defined on any translation surface X with a distin-
guished oriented saddle connection γ. If there is no saddle connection homologous
to γ then the operation does nothing to X. Otherwise let γ1 = γ and γ2, . . . , γk be
saddle connections homologous to γ. Orient γ2, . . . , γk so that they are of the same
direction as γ. The surface X is divided by γ1, . . . , γk into k domains C1, . . . , Ck,
each domain being bounded by two saddle connections. We assume γ2, . . . , γk and
C1, . . . , Ck are named so that each Ci is bounded by γi and γi+1 (by definition,
γk+1 = γ1) and, moreover, Ci lies to the right of γi (with respect to the direction
of γi). Choose a partition τ of X by a maximal set of disjoint saddle connections
containing γ1, . . . , γk. As described in Section 5, the translation surface X can be
obtained by gluing together plane triangles so that these triangles become cells of τ
and edges of τ correspond to glued sides of the triangles. Reverse this construction
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and decompose X into disjoint plane triangles. For any i, 1 ≤ i ≤ k, let T+
i denote

the triangle corresponding to the cell of τ bounded by γi and contained in Ci. By T−
i

denote the triangle corresponding to the other cell of τ bounded by γi. Now glue the
triangles in a different way. Namely, the side of T+

i parallel to γ is glued to a side of
T−

i+1 (instead of T−
i ), where by definition T−

k+1 = T−
1 , while all other sides of triangles

are glued together as before. The new gluing gives k distinct translation surfaces
X1, . . . , Xk. Namely, each Xi is obtained by gluing together triangles corresponding
to cells of τ contained in Ci. By construction Xi is equipped with a triangulation τi
by disjoint saddle connections. Also, we have a distinguished oriented edge γ′i of τi
that corresponds to glued sides of T+

i and T−
i+1. Xi contains no saddle connection

homologous to γ′i. The sum of areas of X1, . . . , Xk is equal to the area of X.
Now suppose X = Mp and the translation structure ω of X belongs to Ω(p, n)

(p, n ≥ 1). Let τ̃ ∈ T (p, n) be the affine equivalence class of τ and ω̃ ∈ N(τ̃) be the
isotopy class of ω. Let γ̃ be the oriented edge of τ̃ corresponding to γ (note that γ̃ is
actually a homotopy class). Then the translation structure of any Xi (1 ≤ i ≤ k) is
isomorphic to some ωi ∈ Ω(pi, ni), where pi and ni are determined by τ̃ and γ̃. The
triangulation τi corresponds to a triangulation in a class τ̃i ∈ T (pi, ni). The class τ̃i is
determined up to the action of Mod(pi, ni) but once we fix it and specify an oriented
edge γ̃i of τ̃i corresponding to γ′i, the isotopy class ω̃i ∈ N(τ̃i) of ωi is uniquely
determined by ω̃, τ̃ , and γ̃. Thus we obtain a map CUT [τ̃ , γ̃; τ̃1, γ̃1, . . . , τ̃k, γ̃k] :
N(τ̃) → N(τ̃1) × . . .×N(τ̃k), which is obviously affine.

The gluing operation is inverse to cutting. Let X1, . . . , Xk be translation surfaces
and suppose each Xi has a distinguished oriented saddle connection γi. The gluing
operation is defined if the holonomy vectors of γ1, . . . , γk coincide. For any Xi choose
a triangulation τi by disjoint saddle connections including γi. Then decompose Xi

into plane triangles according to the partition τi. We assume that all triangles ob-
tained by decomposing surfaces X1, . . . , Xk are disjoint. Let T+

i denote the triangle
that corresponds to the cell of τi bounded by γi and lying to the right of γi. By T−

i

denote the triangle corresponding to the other cell of τi bounded by γi. Now reglue
the triangles in the following way. Let the side of T+

i parallel to γi be glued to the
side of T−

i−1 parallel to γi−1 (if i = 1, we assume T−
0 = T−

k and γ0 = γk); this is
possible as γi and γi−1 have the same holonomy vector. All other sides of triangles
are glued together as before. After the gluing we obtain a single translation surface
X equipped with a triangulation τ by a maximal set of disjoint saddle connections.
Let γ′i (1 ≤ i ≤ k) be the edge of τ that corresponds to glued sides of T+

i and T−
i−1.

Then γ′1, . . . , γ
′
k are homologous saddle connections of X. The surface X contains no

more saddle connections homologous to γ′1, . . . , γ
′
k provided for any Xi there is no

saddle connection homologous to γi. The area of X is the sum of areas of X1, . . . , Xk.
Now suppose the translation structure ωi of each Xi, 1 ≤ i ≤ k, belongs to

some Ω(pi, ni). Let τ̃i ∈ T (pi, ni) be the affine equivalence class of τi and ω̃i ∈ N(τ̃i)
be the isotopy class of ωi. Let γ̃i be the oriented edge of τ̃i corresponding to γi.
Then the translation structure of X is isomorphic to some ω ∈ Ω(p, n), where p
and n are determined by τ̃1, . . . , τ̃k and γ̃1, . . . , γ̃k. The triangulation τ corresponds
to a triangulation in a class τ̃ ∈ T (p, n) that is determined up to the action of
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Mod(p, n). Once we fix τ̃ and specify its oriented edge γ̃ corresponding to γ′1, the
isotopy class ω̃ ∈ N(τ̃) of ω is uniquely determined by ω̃i, τ̃i, γ̃i, i = 1, . . . , k. Thus we
obtain a map GLU [τ̃1, γ̃1, . . . , τ̃k, γ̃k; τ̃ , γ̃] : U → N(τ̃) that is defined on the set U of
(ω̃1, . . . , ω̃k) ∈ N(τ̃1)×. . .×N(τ̃k) such that holω̃1(γ̃1) = . . . = holω̃k

(γ̃k). Note that U
is an affine submanifold of Q(p1, n1)× . . .×Q(pk, nk) and GLU [τ̃1, γ̃1, . . . , τ̃k, γ̃k; τ̃ , γ̃]
is an affine map.

We proceed to the collapsing operation. Let X be a translation surface with
a distinguished oriented saddle connection γ. It is assumed that X has no saddle
connection homologous to γ. Also, we require thatX be not a torus with one singular
point. Let τ be a triangulation of X by disjoint saddle connections including γ. By
T+ and T− denote two triangles of τ bounded by γ. Assume that T+ lies to the
right of γ while T− lies to the left. The saddle connection γ is collapsed as follows.
We decompose X into plane triangles according to the partition τ and discard two
triangles corresponding to T+ and T−. Then the remaining triangles are modified in
a canonical way so that they can be glued together into another translation surface.
In general, the collapsing operation is well-defined if γ is much shorter than the
other edges of τ and angles of any triangle of τ not bounded by γ are not too small
(precise conditions will be given later). Let T0 = T+, T1, . . . , Tk = T− be a sequence
of triangles of τ such that any two neighboring triangles have common edge different
from γ and the length of the sequence is the least possible. By γi (1 ≤ i ≤ k) denote
a common edge of triangles Ti−1 and Ti different from γ. Let γ+ be the edge of T+

different from γ and γ1, and γ− be the edge of T− different from γ and γk. First
consider the case when k = 1, that is, T+ and T− have two common edges γ and
γ1. Since X is not a torus with one singular point, γ+ 6= γ−. Clearly, γ+ and γ− are
homologous saddle connections bounding a regular periodic cylinder. The collapsing
operation in this case consists of removing the cylinder. Namely, after decomposing
X and discarding two triangles only two sides of the remaining triangles cannot be
glued as before. These sides correspond to homologous saddle connections γ+ and
γ−, therefore they can be glued by translation. The other sides are glued as before
and we obtain a translation surface X0.

Now consider the case when k > 1, i.e., γ is the only common edge of T+ and T−.
Then the edges γ1, γ+, γk, and γ− are all distinct. Let T+ be the triangle of τ bounded
by γ+ and distinct from T+. Let T− be the triangle bounded by γ+ and distinct
from T−. Note that T+ 6= T1 as otherwise the edge of T+ different from γ+ and γ1

would be homologous to γ. Similarly, T− 6= Tk−1. Since the sequence T0, T1, . . . , Tk

is as short as possible, it does not contain triangles T+ and T−. Moreover, triangles
T0, T1, . . . , Tk are all distinct and so are saddle connections γ1, . . . , γk. Decompose
the translation surface X into disjoint plane triangles according to the triangulation
τ . For any i, 1 ≤ i ≤ k − 1, let T ′

i be the plane triangle corresponding to Ti. By γ′i
and γ′′i+1 denote the sides of T ′

i corresponding to edges γi and γi+1, respectively. By
Ai denote the common endpoint of γ′i and γ′′i+1. Further, let T ′

+ and T ′
− be the plane

triangles corresponding to T+ and T−. Let γ′+ denote the side of T ′
+ corresponding

to γ+ and γ′− denote the side of T ′
− corresponding to γ−. After discarding plane

triangles corresponding to T+ and T−, the sides γ′1, γ
′
+, γ′′k , and γ′− lose sides they
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were glued to. We are going to glue γ′1 to γ′+ and γ′′k to γ′− while the other sides
of the remaining triangles will be glued as before. To make this possible, we shall
modify triangles T ′

1, . . . , T
′
k−1. Let v denote the holonomy vector of γ. The saddle

connections γ1 and γ+ can be oriented so that their holonomy vectors differ by v or
−v. It follows that we can move the vertex A1 of the triangle T ′

1 by v or −v so that
sides γ′1 and γ′+ can be glued by translation. However this changes the side γ′′1 and
it cannot be glued to γ′2 anymore. To fix this problem, we move the vertex A2 of T ′

2

by v or −v, and so on. Finally each Ai is moved by v or −v. Note that each time the
choice of a vector (v or −v) is uniquely determined by the configuration of triangles
T0, T1, . . . , Tk and saddle connections γ, γ+, γ1, . . . , γk. It is assumed that none of
the triangles T ′

1, . . . , T
′
k−1 degenerates while being modified, i.e., each Ai does not

cross the straight line containing the opposite side of T ′
i ; otherwise the collapsing

operation is not defined. Besides, we assume that all plane triangles are still disjoint
after modifications. Then we can glue sides in each pair by translation and obtain
a translation surface X0. Indeed, this follows from the above for all pairs except γ′′k
and γ′−. The sides γ′′k and γ′− can be glued by translation since the other pairs can.

Now suppose the translation structure ω of X belongs to some Ω(p, n). Let
τ̃ ∈ T (p, n) be the affine equivalence class of τ and ω̃ ∈ N(τ̃) be the isotopy class of
ω. Let γ̃ be the oriented edge of τ̃ corresponding to γ. Then the translation struc-
ture of X0 is isomorphic to some ω0 ∈ Ω(p0, n0), where p0 and n0 are determined
by τ̃ and γ̃. By construction ω0 is equipped with a triangulation τ0 by disjoint sad-
dle connections. We distinguish two edges of τ0. In the case k > 1, let er be the
edge obtained by gluing the side γ′1 to γ′+ and el be the edge obtained by gluing
γ′′k to γ′−. In the case k = 1, let er = el be the edge obtained by gluing together
the sides corresponding to γ+ and γ−. We orient er and el so that pairs of vectors
(holω0(er), holω(γ)) and (holω0(el), holω(γ)) induce the standard orientation in R2.
Let τ̃0 ∈ T (p0, n0) be the affine equivalence class of τ0. τ̃0 is determined by τ̃ and γ̃ up

to the Mod(p0, n0) action on T (p0, n0). Let T̃0, . . . , T̃k be triangles of τ̃ correspond-
ing to T0, . . . , Tk and γ̃1, . . . , γ̃k be edges of τ̃ corresponding to γ1, . . . , γk. Note that
T̃0, . . . , T̃k and γ̃, γ̃1, . . . , γ̃k are defined up to the H0(p, n) action on Mp. Once we fix
τ̃0 and specify its oriented edges ẽr, ẽl corresponding to er, el, the isotopy class ω̃0

of ω0 is uniquely determined by ω̃, τ̃ , γ̃, T̃0, . . . , T̃k, γ̃1, . . . , γ̃k. Thus we obtain a map
COL[τ̃ , γ̃; T̃0, . . . , T̃k; γ̃1, . . . , γ̃k; τ̃0, ẽr, ẽl] : U → N(τ̃0), where U ⊂ N(τ̃). This map is
affine, namely, there exists a linear mapping f : H1(Mp, Zn; R2) → H1(Mp0 , Zn0 ; R

2)

such that dev(COL[τ̃ , γ̃; T̃0, . . . , T̃k; γ̃1, . . . , γ̃k; τ̃0, ẽr, ẽl](ω̃)) = f(dev(ω̃)) for any ω̃ ∈
U . It follows from the construction that U is the set of ω̃ ∈ N(τ̃) such that
f(dev(ω̃)) ∈ dev(N(τ̃0)) (cf. the proof of Lemma 6.1).

The inserting operation is inverse to collapsing. Let X0 be a translation surface
and τ0 be a triangulation of X0 by disjoint saddle connections. Let er, el be oriented
edges of τ0 and vr, vl be their holonomy vectors. Finally, let v be a nonzero vector
in R2 such that pairs of vectors (vr, v) and (vl, v) induce the standard orientation
in R2. The inserting operation results in a translation surface X that has a saddle
connection with holonomy vector v. In general, the operation is defined if v is short
enough (precise conditions will be given later). First consider the case when el = er.
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Let T+ and T− be triangles of τ0 bounded by er. We assume that the orientation of
er agrees with the counterclockwise orientation of the boundary of T+. Decompose
X0 into disjoint plane triangles according to the partition τ0. Let T ′

+ and T ′
− be the

plane triangles corresponding to T+ and T−. Let γ′+ and γ′− denote the sides of T ′
+

and T ′
−, respectively, corresponding to er. Add a parallelogram B1B2B3B4 such that

B1 − B2 = B4 − B3 = v, B3 − B2 = B4 − B1 = vr. Now glue all triangles and the
parallelogram together as follows. The side B2B1 of the parallelogram is glued to its
side B3B4. The sides B1B4 and B2B3 are glued to γ′+ and γ′−, respectively. All the
other sides are glued as before. We obtain a translation surface X.

Now consider the case el 6= er. Choose a sequence T1, . . . , Tk of triangles of τ0
such that er is an edge of T1, el is an edge of Tk, any two neighboring triangles
have common edge different from er and el, and the length of the sequence is the
least possible. By γi (1 ≤ i ≤ k − 1) denote a common edge of triangles Ti and
Ti+1 different from er and el. Also, let γ0 = er and γk = el. Let T+ be the triangle
of τ0 bounded by er and distinct from T1. Let T− be the triangle bounded by el

and distinct from Tk. Since the sequence T1, . . . , Tk is as short as possible, it does
not contain T+ and T−. Also, triangles T1, . . . , Tk are all distinct and so are saddle
connections γ1, . . . , γk−1. Decompose X0 into disjoint plane triangles according to
the partition τ0. For any i, 1 ≤ i ≤ k, let T ′

i be the plane triangle corresponding
to Ti. By γ′i−1 and γ′′i denote the sides of T ′

i corresponding to edges γi−1 and γi,
respectively. By Ai denote the common endpoint of γ′i−1 and γ′′i . Further, let T ′

+ and
T ′
− be the plane triangles corresponding to T+ and T−. Let γ′+ denote the side of T ′

+

corresponding to er and γ′− denote the side of T ′
− corresponding to el. We add two

more plane triangles T ′
r and T ′

l with the following properties. First of all, T ′
r and T ′

l

have oriented sides γ′r and γ′l equal to v as vectors. Moreover, T ′
r lies to the right of

γ′r while T ′
l lies to the left of γ′l. Further, T ′

r has a side e′+ that can be glued to the
side γ′+ of T ′

+ while T ′
l has a side e′− that can be glued to the side γ′− of T ′

−. By e′r
denote the side of T ′

r different from γ′r and e′+. By e′l denote the side of T ′
l different

from γ′l and e′−. Now we are going to glue γ′r to γ′l, e
′
+ to γ′+, e′− to γ′−, e′r to γ′0, e

′
l to

γ′′k , while the other sides of the triangles will be glued as before. At this point the
sides e′r and γ′0 cannot be glued by translation but we can move the vertex A1 of the
triangle T ′

1 by v or −v so that the gluing is possible. However this changes the side
γ′′1 and it cannot be glued to γ′1 anymore. To fix this problem, we move the vertex
A2 of T ′

2 by v or −v, and so on. Finally each Ai is moved by v or −v, where the
choice of a vector is uniquely determined by the configuration of triangles T1, . . . , Tk

and saddle connections γ0, γ1, . . . , γk. It is assumed that all plane triangles remain
disjoint after modifications. The inserting operation is defined if none of the triangles
T ′

1, . . . , T
′
k degenerates while being modified. Then we can glue sides in each pair by

translation and obtain a translation surface X. Indeed, this follows from the above
for all pairs except e′l and γ′′k . The sides e′l and γ′′k can be glued by translation since
the other pairs can.

Now suppose the translation structure ω0 of X0 belongs to some Ω(p0, n0). Let
τ̃0 ∈ T (p0, n0) be the affine equivalence class of τ0 and ω̃0 ∈ N(τ̃0) be the isotopy
class of ω0. Let ẽr and ẽl be oriented edges of τ̃0 corresponding to er and el. Then

46



the translation structure of X is isomorphic to some ω ∈ Ω(p, n), where p and n
depend on τ̃0, ẽl, and ẽr. In both cases, el = er and el 6= er, the surface X is equipped
with a partition τ by disjoint saddle connections. Moreover, τ has a distinguished
oriented edge γ with holonomy vector v. If el 6= er then τ is a triangulation in a
class τ̃ ∈ T (p, n) that is determined by τ̃0, ẽl, and ẽr up to the Mod(p, n) action.
If el = er then one of cells of τ is a quadrilateral. We can make τ into a triangu-
lation by adding a diagonal of the quadrilateral. Two triangulations obtained this
way are not affine equivalent but they correspond to the same element of MT (p, n).
Hence the affine equivalence class τ̃ of any of them is determined up to the action
of Mod(p, n). Let us fix τ̃ and specify its oriented edge γ̃ corresponding to γ. In
the case el = er the isotopy class ω̃ ∈ N(τ̃) of ω is then uniquely determined by

v, ω̃0, τ̃0, and ẽr = ẽl. In the case el 6= er, let T̃1, . . . , T̃k be triangles of τ̃0 correspond-
ing to T1, . . . , Tk and γ̃1, . . . , γ̃k−1 be edges of τ̃0 corresponding to γ1, . . . , γk−1. Then
ω̃ is uniquely determined by v, ω̃0, τ̃0, ẽr, ẽl, T̃1, . . . , T̃k, γ̃1, . . . , γ̃k−1. In any case we
get a map INS[τ̃0, ẽr, ẽl; T̃1, . . . , T̃k; γ̃1, . . . , γ̃k−1; τ̃ , γ̃] : U0 → N(τ̃) defined on a set
U0 ⊂ R2×N(τ̃0). The map INS[D] (here D stands for the set of parameters of the op-
eration) is affine, namely, there exists a linear mapping f0 : R2×H1(Mp0 , Zn0 ; R

2) →
H1(Mp, Zn; R2) such that dev(INS[D](v, ω̃0)) = f0(v, dev(ω̃0)) for any (v, ω̃0) ∈ U0.
It follows from the construction that U0 is the set of (v, ω̃0) ∈ R2 ×N(τ̃0) such that
f0(v, dev(ω̃0)) ∈ dev(N(τ̃)).

Now we define more complex operation on translation surfaces. Suppose X0 is
a translation torus with n singular points such that the translation structure ω0 of
X0 belongs to Ω(1, n) and the isotopy class ω̃0 of ω0 belongs to P (n) ⊂ N(τ (n)).
Further, let X1, . . . , Xk be translation surfaces. The triangulation in the class τ (n)

of X0 has distinguished oriented edge L1 in the homotopy class L(n). By v denote
the holonomy vector of L1. First the cutting operation is applied to the surface X0

and the edge L1. We yield an ordered sequence of n translation tori X01, . . . , X0n.
Further for any Xj, 1 ≤ j ≤ k, we insert a saddle connection with holonomy
vector v by applying an inserting operation. Assuming the inserting operation is
well defined, we get a translation surface X ′

j. Suppose l1, . . . , lk are integers such
that 0 ≤ l1 ≤ . . . ≤ lk ≤ n. We merge two sequences X01, . . . , X0n and X ′

1, . . . , X
′
k

together in such a way that X0i appears before X ′
j if and only if i ≤ lj. Each surface

in the new sequence has a distinguished saddle connection with holonomy vector v.
Finally we apply the gluing operation and obtain a translation surface X.

Now suppose the translation structure ωj of every Xj, 1 ≤ j ≤ k, belongs to
some Ω(pj, nj). Let ω, ω01, . . . , ω0n, ω

′
1, . . . , ω

′
k denote the translation structures of

X,X01, . . . , X0n, X
′
1, . . . , X

′
k, respectively. It is no loss to assume that each of these

translation structures also belongs to some Ω(p′, n′). Let the tilde denote the isotopy
class of a translation structure. Then (ω̃01, . . . , ω̃0n) = CUT [τ (n), L(n);D0](ω̃0) for a
set D0 of parameters. Further, ω̃′

j = INS[τj,Dj; τ
′
j, γ

′
j](v, ω̃j), where τj ∈ T (pj, nj)

and Dj is a set of parameters. Finally,

ω̃ = GLU [D′; τ, γ](ω̃01, . . . , ω̃0l1 , ω̃
′
1, . . . , ω̃

′
k, ω̃0,lk+1, . . . , ω̃0n)
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for another set D′ of parameters. Thus we yield a map

OPR[n; τ1,D1, . . . , τk,Dk; l1, . . . , lk; τ, γ] : U∗ → N(τ)

defined on an open set U∗ ⊂ P (n) × N(τ1) × . . . × N(τk). We shall use the no-
tation OPR[n;D], that is, D stands for all the other parameters. Suppose ω̃0 ∈
P (n) and ω̃j ∈ N(τj), j = 1, . . . , k. Then (ω̃0, ω̃1, . . . , ω̃k) ∈ U∗ if and only if
INS[τj,Dj; τ

′
j, γ

′
j](holω̃0(L

(n)), ω̃j) is well defined for 1 ≤ j ≤ k.

Lemma 8.3 The map OPR[n;D] is affine, injective, and volume preserving.

Proof. Suppose ω = OPR[n;D](ω0, ω1, . . . , ωk). By construction every triangle of
triangulations τ (n), τ1, . . . , τk is assigned a triangle of τ while every edge is assigned
one or two edges of τ . Let γ be an oriented edge of τ (n) or τj, 1 ≤ j ≤ k, and γ′ be
a corresponding edge of τ . If γ is an edge of τ (n) then holω(γ′) = holω0(γ). If γ is an
edge of τj then holω(γ′) = holωj

(γ) + cγ holω0(L
(n)), where cγ ∈ {−1, 0, 1} depends

only on γ.
Let γ01 = L(n), γ02, . . . , γ0s0 be a maximal set of edges of τ (n) that do not divide

the surface. For any j, 1 ≤ j ≤ k, let γj1, . . . , γjsj
be a maximal set of edges of τj

that do not divide the surface. Let γ′ji denote an edge of τ assigned to γji. It is easy
to observe that the edges γ′ji, 1 ≤ i ≤ sj, 0 ≤ j ≤ k, are all distinct and comprise a
maximal set of edges of τ that do not divide the surface. Let K = s0 + s1 + · · ·+ sk.
Define maps f1 : N(τ (n))×N(τ1)× . . .×N(τk) → (R2)K and f2 : N(τ) → (R2)K by

f1(ω0, ω1, . . . , ωk) = (holω0(γ01), . . . , holω0(γ0s0), holω1(γ11), . . . , holωk
(γksk

)),

f2(ω) = (holω(γ′01), . . . , holω(γ′0s0
), holω(γ′11), . . . , holω(γ′ksk

)).

Both maps are affine. By Lemmas 6.1 and 6.2, f1 and f2 are injective and volume
preserving. By the above there exists a linear map F : (R2)K → (R2)K such that
f2(OPR[n;D](ω∗)) = F (f1(ω

∗)) for any ω∗ ∈ U∗. Given v1, . . . , vK ∈ R2, one has
F (v1, v2, . . . , vK) = (v1, v2 + c2v1, . . . , vK + cKv1), where c2, . . . , cK ∈ {−1, 0, 1} are
constants. It follows that F is volume preserving. Then OPR[n;D] is a volume
preserving affine map. It is injective since f1 and F are injective.

Suppose U0 ⊂ R2 and Uj ⊂ N(τj) ∩ Q1(pj, nj), j = 1, . . . , k. Consider the
set P (n)[D](U0;U1, . . . , Uk) consisting of ω ∈ N(τ) such that a(ω) ≤ 1 and ω =
OPR[n;D](ω0, t1ω1, . . . , tkωk), where ω0 ∈ P (n)(U0), ωj ∈ Uj and tj > 0 for 1 ≤
j ≤ k. Given i ∈ {1, . . . , n} and σ ∈ [0, 1), we let ω ∈ P

(n)
σ,i [D](U0;U1, . . . , Uk) if, in

addition, ai(ω0) > σa(ω).

Lemma 8.4 Let U0 ⊂ R2 \ {(0, 0)} and Uj ⊂ N(τj) ∩ Q1(pj, nj), 1 ≤ j ≤ k, be
nonempty open subsets. Assume U0 is bounded and the closure of each Uj, 1 ≤ j ≤ k,
is a compact subset of N(τj). Further assume that for any v ∈ U0 and ωj ∈ Uj

(1 ≤ j ≤ k) the jth inserting operation is defined on (tv, ωj) when t > 0 is small
enough. Then (a)

lim
ǫ→0

ǫ−2µ(P (n)[D](ǫU0;U1, . . . , Uk)) = µ∗(P (n)(U0;U1, . . . , Uk)) > 0,
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where µ is the canonical measure on N(τ) and µ∗ denotes the product of the canonical
measures on Q(1, n),Q(p1, n1), . . . ,Q(pk, nk);

(b) for any σ ∈ [0, 1) and i ∈ {1, . . . , n},

lim
ǫ→0

µ(P
(n)
σ,i [D](ǫU0;U1, . . . , Uk))

µ(P (n)[D](ǫU0;U1, . . . , Uk))
= (1 − σ)K−2,

where K is half of the dimension of N(τ);
(c) if, in addition, U0, U1, . . . , Uk are connected sets and tU0 ⊂ U0 for 0 < t < 1,

then the set P (n)[D](U0;U1, . . . , Uk) is connected.

Proof. Consider an inserting operation f0 = INS[τ0, er, el;D0; τ
′, γ′]. Here D0 is

empty if er = el; otherwise D0 stands for a sequence T1, . . . , Ts of triangles and
a sequence γ1, . . . , γs−1 of edges of τ0. The operation is defined on a set U∗

0 ⊂
R2 × N(τ0). Suppose v ∈ R2 and ω ∈ N(τ0). Let Λ denote the euclidean area
form on R2. If (v, ω) ∈ U∗

0 , then Λ(holω(er), v) > 0 and Λ(holω(el), v) > 0. In the
case er = el, these conditions determine the set U∗

0 . In the case er 6= el, there are
also s nondegeneracy conditions. They can be expressed in the form Λ(holω(L1i) +
v, holω(L2i)) > 0, i = 1, . . . , s, where L1i, L2i are certain oriented edges of τ0 such
that Λ(holω(L1i), holω(L2i)) > 0 for any ω ∈ N(τ0). Namely, L1i and L2i are edges of
the triangle Ti such that L1i is in the sequence er, γ1, . . . , γs−1, el while L2i is not. It
follows that U∗

0 is an open set. Furthermore, if (v, ω) ∈ U∗
0 then (tv, tω) ∈ U∗

0 for any
t > 0 and (tv, ω) ∈ U∗

0 for 0 < t < 1. If Λ(holω(er), v) > 0 and Λ(holω(el), v) > 0 then
(tv, ω) ∈ U∗

0 provided t > 0 is small enough. Each triangle T of τ0 corresponds to a
triangle T ′ of τ ′. Suppose (v, ω) ∈ U∗

0 and ω′ = f0(v, ω). If T is not in the sequence
T1, . . . , Ts then the area of T with respect to ω equals the area of T ′ with respect to
ω′. Otherwise the two areas may differ but the difference is at most Cω|v|/2, where
Cω is the maximum length of edges of τ0 with respect to ω. Besides, there are two
triangles of τ ′ bounded by γ′ that are not associated to triangles of τ0. Their areas
with respect to ω′ do not exceed Cω|v|/2. It follows that |a(ω′) − a(ω)| ≤ m0Cω|v|,
where m0 is half of the number of triangles of τ ′.

Now consider the map f = OPR[n;D] defined on the set U∗ ⊂ P (n) × N(τ1) ×
. . . × N(τk). Suppose (ω0, ω1, . . . , ωk) ∈ U∗. By the above (tω0, tω1, . . . , tωk) ∈ U∗

for any t > 0, (tω0, ω1, . . . , ωk) ∈ U∗ for 0 < t < 1, and (ω0, t1ω1, . . . , tkωk) ∈ U∗

for t1, . . . , tk ≥ 1. The set U0 is bounded, i.e., it is contained in the disk B(C0) for
some C0 > 0. Since the closure of each Uj, 1 ≤ j ≤ k, is a compact subset of N(τj),
Uj has finite volume in Q1(pj, nj). Also, there exist C, c, δ > 0 such that for any
triangulation in the class τj of a translation surface in an isotopy class ωj ∈ Uj all
edges are of length at most C and at least c while all angles of each triangle are not
less than δ. Since for any v ∈ U0 and ωj ∈ Uj the jth inserting operation is defined
on (tv, ωj) when t > 0 is small enough, there exists a constant ǫ0 > 0 depending on
C0, c, δ such that the jth inserting operation is defined on (ǫ0v, ωj). It follows that
P (n)(ǫ0U0) × U1 × . . .× Uk ⊂ U∗.

For any (ω0, ω1, . . . , ωk) ∈ P (n) × N(τ1) × . . . × N(τk) let a∗(ω0, ω1, . . . , ωk) =
a(ω0) + a(ω1) + · · · + a(ωk). Suppose ω = f(ω∗) for some ω∗ = (ω0, t1ω1, . . . , tkωk),
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where ω0 ∈ P (n)(ǫU0), ǫ > 0, ωj ∈ Uj and tj > 0 for 1 ≤ j ≤ k. By the above
|a∗(ω∗) − a(ω)| ≤ mCtmax| holω0(L

(n))|, where tmax = max(t1, . . . , tk) and m is half
of the number of triangles of the triangulation τ . Moreover, | holω0(L

(n))| ≤ C0ǫ. If
a∗(ω∗) ≤ 1 then tmax ≤ 1. If a(ω) ≤ 1 then |a∗(ω∗) − a(ω)| > t2max − 1; it follows
that tmax < 2 whenever ǫ ≤ 3(2mC0C)−1. Hence there exist C1, ǫ1 > 0 such that
|a∗(ω∗) − a(ω)| ≤ C1ǫ if a∗(ω∗) ≤ 1 or a(ω) ≤ 1 and ǫ ≤ ǫ1.

For any ǫ, α > 0 let Y (ǫ, α) be the set of (ω0, . . . , ωk) ∈ P (n)×R+U1× . . .×R+Uk

such that holω0(L
(n)) ∈ ǫU0 and a∗(ω0, . . . , ωk) ≤ α. Observe that tY (ǫ, α) =

Y (tǫ, t2α) for any t > 0, where by definition t(ω0, . . . , ωk) = (tω0, . . . , tωk). Clearly,
Y (ǫ, 1) = P (n)(ǫU0;U1, . . . , Uk). It was shown in the proof of Lemma 8.2 that
µ∗(P (n)(ǫU0;U1, . . . , Uk)) = m(ǫU0)c

∗, where c∗ > 0 depends on U1, . . . , Uk, and
n. Hence µ∗(Y (ǫ, α)) = αKµ∗(Y (α−1/2ǫ, 1)) = αK−1ǫ2m(U0)c

∗.
For any ǫ > 0 let Y0(ǫ) = f−1(P (n)[D](ǫU0;U1, . . . , Uk)) ∩ P (n)(ǫU0;U1, . . . , Uk),

Y1(ǫ) = f−1(P (n)[D](ǫU0;U1, . . . , Uk)) \ Y0(ǫ), Y2(ǫ) = P (n)(ǫU0;U1, . . . , Uk) \ Y0(ǫ),
Y3(ǫ) = Y2(ǫ)∩U∗, Y4(ǫ) = Y2(ǫ)\U∗. If ω∗ ∈ Y1(ǫ) then a∗(ω∗) > 1 and a(f(ω∗)) ≤ 1.
If ω∗ ∈ Y3(ǫ) then a(f(ω∗)) > 1 and a∗(ω∗) ≤ 1. In both cases, |a∗(ω∗) − 1| ≤ C1ǫ
provided ǫ ≤ ǫ1. Therefore Y1(ǫ)∪Y3(ǫ) is a subset of Y (ǫ, 1+C1ǫ) while it is disjoint
from Y (ǫ, α) for α < 1 − C1ǫ. It follows that µ∗(Y1(ǫ) ∪ Y3(ǫ)) ≤ ((1 + C1ǫ)

K−1 −
(1 − C1ǫ)

K−1)ǫ2m(U0)c
∗ if C1ǫ < 1. Hence ǫ−2µ∗(Y1(ǫ) ∪ Y3(ǫ)) → 0 as ǫ→ 0.

It is easy to see that P (n)(ǫU0;U1, . . . , Uk) ⊂ P (n)(ǫU0) × Ũ1 × . . . × Ũk, where

Ũj = {tω | ω ∈ Uj, 0 < t ≤ 1}. Let µ0, µ1, . . . , µk be the canonical measures
on Q(1, n),Q(p1, n1), . . . ,Q(pk, nk), respectively. Then µ0(P

(n)(ǫU0)) = m(ǫU0)cn =
ǫ2m(U0)cn, where cn > 0 is a constant (see the proof of Lemma 8.2). Besides,

µj(Ũj) < ∞. Suppose (ω0, . . . , ωk) ∈ Y4(ǫ). Then (ω0, . . . , ωk) /∈ U∗, hence ωj ∈
ǫǫ−1

0 Ũj for some 1 ≤ j ≤ k. Since µj(ǫǫ
−1
0 Ũj) = (ǫ/ǫ0)

2(2pj+nj−1)µj(Ũj), it follows
that ǫ−2µ∗(Y4(ǫ)) → 0 as ǫ→ 0. Thus we have proved that ǫ−2µ∗(Y1(ǫ)∪Y2(ǫ)) → 0
as ǫ → 0. Then limǫ→0 ǫ

−2µ∗(Y0(ǫ)) = m(U0)c
∗ > 0. Since f is injective and volume

preserving map, statement (a) of the lemma follows.
Suppose ω∗ ∈ Y0(ǫ)\Y (ǫ, C1ǫ

1/2), where ǫ ≤ ǫ1. Then |a(f(ω∗))−a∗(ω∗)| ≤ C1ǫ ≤
ǫ1/2a∗(ω∗). If f(ω∗) ∈ P

(n)
σ,i [D](ǫU0;U1, . . . , Uk) for some σ > 0 and i, then ω∗ ∈

P
(n)

(1−ǫ1/2)σ,i
(ǫU0;U1, . . . , Uk) assuming ǫ < 1, else ω∗ /∈ P

(n)

(1+ǫ1/2)σ,i
(ǫU0;U1, . . . , Uk)

assuming (1 + ǫ1/2)σ < 1. Therefore

µ∗(P
(n)

(1+ǫ1/2)σ,i
(ǫU0;U1, . . . , Uk)) − µ∗(Y (ǫ, C1ǫ

1/2) ∪ Y2(ǫ)) ≤

µ(P
(n)
σ,i [D](ǫU0;U1, . . . , Uk)) ≤

µ∗(P
(n)

(1−ǫ1/2)σ,i
(ǫU0;U1, . . . , Uk)) + µ∗(Y (ǫ, C1ǫ

1/2) ∪ Y1(ǫ)).

Since ǫ−2µ∗(Y (ǫ, C1ǫ
1/2) ∪ Y1(ǫ) ∪ Y2(ǫ)) → 0 as ǫ → 0, statement (b) of the lemma

follows from its statement (a) and Lemma 8.2.
Now assume U0, U1, . . . , Uk are connected sets. It is easy to observe that the

set P (n)({v}) is connected for any nonzero v ∈ R2. Let gv be a unique element
of SL(2,R) such that gvv = (0, 1) and gvv0 = (1, 0) for some v0 orthogonal to
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v. Then gvP
(n)({v}) = P (n)({(0, 1)}). Since gv depends continuously on v, it fol-

lows that P (n)(U0) is connected whenever U0 ⊂ R2 \ {(0, 0)} is connected. Suppose
ω′, ω′′ ∈ P (n)[D](U0;U1, . . . , Uk). Then f−1(ω′) = (ω′

0, t
′
1ω

′
1, . . . , t

′
kω

′
k) and f−1(ω′′) =

(ω′′
0 , t

′′
1ω

′′
1 , . . . , t

′′
kω

′′
k), where ω′

0, ω
′′
0 ∈ P (n)(U0), ω

′
j, ω

′′
j ∈ Uj and t′j, t

′′
j > 0 for 1 ≤

j ≤ k. There exist continuous paths ω0 : [0, 1] → P (n)(U0) and ωj : [0, 1] → Uj,
j = 1, . . . , k, such that ωj(0) = ω′

j and ωj(1) = ω′′
j for 0 ≤ j ≤ k. Pick t0 > 0 such

that t′j, t
′′
j ≥ t0 and ǫ0t0 ≤ 1. For any u ∈ [0, 1] let

ω∗(u) = (ǫ0t0ω0(u), ((1 − u)t′1 + ut′′1)ω1(u), . . . , ((1 − u)t′k + ut′′k)ωk(u)).

Then ω∗(u) ∈ U∗ and depends continuously on u. In particular, u 7→ a(f(ω∗(u)))
is a continuous function on [0, 1], hence it is bounded. Note that a(f(tω∗(u))) =
a(tf(ω∗(u))) = t2a(f(ω∗(u))) for any t > 0. Therefore a(f(t1ω

∗(u))) ≤ 1 for some
0 < t1 < 1 and all u. Assume tU0 ⊂ U0 for 0 < t < 1. Then f(t1ω

∗(u)) ∈
P (n)[D](U0;U1, . . . , Uk) for all u ∈ [0, 1], hence f(t1ω

∗(0)) is joined to f(t1ω
∗(1)) by

a continuous path in P (n)[D](U0;U1, . . . , Uk). Furthermore, P (n)[D](U0;U1, . . . , Uk)
contains f(tω∗(0)) for t1 ≤ t ≤ 1 and f(ǫω′

0, t
′
1ω

′
1, . . . , t

′
kω

′
k) for ǫ0t0 ≤ ǫ ≤ 1. There-

fore ω′ can be joined to f(t1ω
∗(0)). Similarly, ω′′ can be joined to f(t1ω

∗(1)). Finally,
ω′ can be joined to ω′′ within P (n)[D](U0;U1, . . . , Uk) by a continuous path. Thus
P (n)[D](U0;U1, . . . , Uk) is connected.

For any ǫ > 0 let Ωǫ(p, n) be the set of translation structures in Ω(p, n) admitting
a saddle connection of length at most ǫ. Further, for any κ ≥ ǫ let Ωǫ,κ(p, n) be the
set of translation structures admitting a saddle connection of length at most ǫ and no
nonhomologous saddle connections of length at most κ. Clearly, Ωǫ,κ(p, n) ⊂ Ωǫ(p, n)
and both sets are invariant under the H(p, n) action. Let Qǫ(p, n) and Qǫ,κ(p, n) de-
note the subsets of Q(p, n) corresponding to Ωǫ(p, n) and Ωǫ,κ(p, n). Let MQǫ(p, n)
and MQǫ,κ(p, n) denote the corresponding subsets of MQ(p, n). By Q≤1(p, n) de-
note the set of ω ∈ Q(p, n) such that a(ω) ≤ 1. The set MQ≤1(p, n) ⊂ MQ(p, n) is
defined in a similar way. Now we let Qǫ

≤1(p, n) = Qǫ(p, n) ∩ Q≤1(p, n), Qǫ,κ
≤1(p, n) =

Qǫ,κ(p, n) ∩ Q≤1(p, n), MQǫ
≤1(p, n) = MQǫ(p, n) ∩ MQ≤1(p, n), MQǫ,κ

≤1(p, n) =
MQǫ,κ(p, n)∩MQ≤1(p, n). Similarly, we define sets Qǫ

1(p, n), Qǫ,κ
1 (p, n), MQǫ

1(p, n),
and MQǫ,κ

1 (p, n).

Theorem 8.5 ([MS]) Let µ0 and µ denote the canonical measures on MQ1(p, n)
and MQ(p, n), respectively. There exists cp,n > 0 such that µ0(MQǫ

1(p, n)) ≤ cp,nǫ
2

and µ(MQǫ
≤1(p, n)) ≤ cp,nǫ

2 for any ǫ > 0, and µ0(MQǫ
1(p, n) \ MQǫ,κ

1 (p, n)) ≤
cp,nǫ

2κ2 and µ(MQǫ
≤1(p, n) \MQǫ,κ

≤1(p, n)) ≤ cp,nǫ
2κ2 for any κ ≥ ǫ.

For any Delaunay triangulation piece M(τ,≺) ⊂ Q(p, n) we define a canonical
ordered basis Γ = (γ1, . . . , γ2p+n−1) for the group H1(Mp, Zn; Z). Namely, for any
j, 1 ≤ j ≤ 2p + n − 1, γj is the least (with respect to ≺) homology class of an
edge of τ that is not a linear combination of γ1, . . . , γj−1. The homology classes
γ1, . . . , γ2p+n−1 are determined up to multiplying by ±1. By X1 denote the set of
vectors v ∈ R2 such that holω(γ1) = v for some ω ∈ M(τ,≺) ∩ Q≤1(p, n). Given
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vectors v1, . . . , vk−1 ∈ R2, 1 < k ≤ 2p+ n− 1, let Xk(v1, . . . , vk−1) denote the set of
v ∈ R2 such that holω(γ1) = v1, . . . , holω(γk−1) = vk−1, and holω(γk) = v for some
ω ∈M(τ,≺) ∩Q≤1(p, n).

Theorem 8.6 ([MS]) X1 is contained in the disk B(
√

8/π). Any Xk(v1, . . . , vk−1)

is contained in the union of B(
√

8/π) and finitely many rectangles of area 1, where
the number of rectangles is bounded by a constant depending on M(τ,≺).

It is easy to see that a shortest saddle connection L0 of a translation surface
M is a Delaunay edge. If all shortest saddle connections of M are homologous to
L0, then any shortest saddle connection of those nonhomologous to L0 is also a
Delaunay edge. In view of this remark, Lemma 6.5, and Fubini’s theorem, Theorem
8.5 is a corollary of Theorem 8.6. Further notice that MQǫ

1(p, n) = MQ1(p, n) for
ǫ ≥

√
8/π. Hence Theorem 6.6 is a corollary of Theorem 8.5. Theorems 6.6, 8.5,

and 8.6 were proved in Section 10 of the paper [MS] (although only the first of them
was explicitly formulated in [MS]).

Let τ ∈ T (p, n) and e be an edge of τ . Suppose ω ∈ N(τ). Pick a translation
structure ω′ in the isotopy class ω and let τ ′ be the triangulation by disjoint saddle
connections of ω′ such that (ω′, τ ′) ∈ τ . Let e′ be the edge of τ ′ corresponding to e.
By θe,τ (ω) denote the sum of two angles opposite e′ in two triangles of τ ′ bounded
by e′. It follows from the proof of Lemma 6.5 that θe,τ (ω) is well defined and depends
continuously on ω. For any δ > 0 let Mδ(τ) denote the set of ω ∈ N(τ) such that
θe,τ (ω) < π − δ for every edge e of τ . By Proposition 5.3, Mδ(τ) ⊂ M(τ) and
M(τ) =

⋃
δ>0Mδ(τ).

Suppose τ ∈ T (p, n) and γ is an edge of τ . For any ǫ, δ > 0 and κ > ǫ let
S(τ, γ; ǫ, κ, δ) denote the set of ω ∈ Qǫ,κ

≤1(p, n) ∩M(τ) such that | holω(γ)| ≤ ǫ and
for any edge e of τ we have θe,τ (ω) < π − δ unless two triangles of τ bounded by e
have two common edges while their third edges are homologous to γ. By S(τ ; ǫ, κ, δ)
denote the union of the sets S(τ, γ; ǫ, κ, δ) over all edges γ of τ .

Lemma 8.7 Given ∆ > 0, there exist κ, δ > 0 such that

µ̃(Qǫ
≤1(p, n) ∩M(τ)) − µ̃(S(τ ; ǫ, κ, δ)) ≤ ∆ǫ2

for all ǫ < κ, where µ̃ denotes the canonical measure on Q(p, n).

Proof. By Lemma 6.5, each Delaunay triangulation halfpiece Mh(τ,≺) projects in-
jectively to MQ(p, n). Up to a set of zero volume, M(τ) is the union of finitely many
halfpieces. Hence Theorem 8.5 implies there exists cτ > 0 such that µ̃(Qǫ

≤1(p, n) ∩
M(τ)) − µ̃(Qǫ,κ

≤1(p, n) ∩ M(τ)) ≤ cτǫ
2κ2 for κ ≥ ǫ > 0. Choose κ > 0 such that

cτκ
2 ≤ ∆/2.
Suppose ω′ is a translation structure in a class ω ∈M(τ)∩Qǫ,κ

≤1(p, n), ǫ < κ, and
let γ be an edge of τ such that | holω(γ)| ≤ ǫ. Given a Delaunay cell T of ω′, there
exist d > 0 and a map ı : B(d) →Mp such that ı is a translation with respect to ω′

and T = ı(T ′), where T ′ is the interior of a plane triangle inscribed in B(d). Note
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that d is the distance from the point q = ı(0) to the set of singular points of ω′. By
Lemma 5.4, if d ≥

√
2/π then q belongs to a periodic cylinder C of length at most

d−1. It is easy to see that if the triangle T is disjoint from C then all edges of T
are not longer than the length of C. As ω ∈ Qǫ,κ(p, n), the length of C is either at
most ǫ or at least κ. In the former case, C is a regular cylinder bounded by saddle
connections homologous to γ and T ⊂ C. In the latter case, d ≤ κ−1 and all edges
of T are of length at most 2κ−1.

Suppose x1, x2, x3 ∈ R2 are vertices of a triangle. For any δ > 0 let Π(x1, x2, x3; δ)
be the set of x ∈ R2 such that π − δ < ∠x1xx2 + ∠x1x3x2 < π and x is separated
from x3 by the straight line passing through x1 and x2. Π(x1, x2, x3; δ) is a domain
bounded by two circles intersecting at x1 and x2, one of them being circumscribed
about the triangle x1x2x3. If we fix the length l of the segment x1x2, the radius r of
the circle passing through x1, x2, x3, and δ, then the area of Π(x1, x2, x3; δ) is bound
to take at most two values. Let α(l, r, δ) denote either of them. It is easy to see that
for any l0, r0 > 0 we have supl≥l0 supr≤r0

α(l, r, δ) → 0 as δ → 0.
Let γ and e be edges of τ . If two triangles bounded by e have two common edges

while their third edges are homologous to γ, then for any ω ∈ N(τ) the edge e crosses
a cylinder of periodic geodesics of ω homologous to γ. Assume this is not the case. For
0 < ǫ < κ and δ > 0 let S ′(τ, γ, e; ǫ, κ, δ) denote the set of ω ∈M(τ)∩Qǫ,κ

≤1(p, n) such
that | holω(γ)| ≤ ǫ and θe,τ (ω) > π − δ. If e is homologous to γ then θe,τ (ω) ≤ 2π/3
for all ω ∈ S ′(τ, γ, e; ǫ, κ, δ) since the angle opposite the shortest side of a triangle
does not exceed π/3. Hence S ′(τ, γ, e; ǫ, κ, δ) is empty for δ ≤ π/3. Now suppose
e and γ are not homologous. Let T1 and T2 be triangles of τ bounded by e. Let
e1 be a side of T1 different from e and e2 be a side of T2 different from e and not
homologous to e1. If an edge of T1 or T2 is homologous to γ, it is no loss to assume e1 is
homologous to γ. Suppose ω ∈ S ′(τ, γ, e; ǫ, κ, δ). Once holω(e) and holω(e1) are fixed,
the holonomy vector holω(e2) belongs to a set Π(x1, x2, x3; δ) of area α(l, r, δ), where
l ≥ κ and r ≤ r1 = max(

√
2/π, κ−1). If any edge of T1 is homologous to an edge

of T2, we can say more (cf. the proof of Lemma 6.5). Namely, once holω(e) is fixed,
the holonomy vector holω(e2) belongs to a set Π(x1, x2, x3; δ/2) of area α(l, l/2, δ/2),
where l = | holω(e)|. By Lemma 6.2, there is a sequence γ1, . . . , γ2p+n−1 of edges of
τ whose homology classes comprise a basis for H1(Mp, Zn; Z). It can be assumed
without loss of generality that this sequence contains an edge homologous to γ, the
edges e, e2, and e1 unless the latter one is homologous to an edge of T2. By the above
| holω(γi)| ≤ 2r1 unless γi crosses a cylinder of periodic geodesics homologous to γ. In
the latter case we have holω(γi) = t holω(γ)+v, where −1 < t < 1, v is orthogonal to
holω(γ), and |v| · | holω(γ)| ≤ 1. It follows that holω(γi) belongs to a rectangle of area
4 depending on holω(γ). Since e2 is not homologous to γ, Fubini’s theorem implies
µ̃(S ′(τ, γ, e; ǫ, κ, δ)) ≤ πǫ2(4πr2

1)
m−2 supl≥κ supr≤r1

α(l, r, δ), where m = 3(2p−2+n)
is the number of edges of τ . For any δ′ > δ the set M(τ)∩Qǫ,κ

≤1(p, n) \ S(τ ; ǫ, κ, δ) is
contained in the union of at most m2 sets of the form S ′(τ, γ, e; ǫ, κ, δ′). Therefore we
can choose δ so that µ̃(M(τ)∩Qǫ,κ

≤1(p, n))−µ̃(S(τ ; ǫ, κ, δ)) ≤ ∆ǫ2/2 for all ǫ < κ.

Suppose ω is a translation structure. For any σ ∈ [0, 1) and R > 0 let N0(ω, σ,R)
denote the number of periodic cylinders of ω of length at most R and of area
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greater than σa(ω). By s(ω) denote the length of the shortest saddle connection
of ω. Further, let N∗

0 (ω, σ,R) = N0(ω, σ, s(ω)) if R ≥ s(ω) and N∗
0 (ω, σ,R) = 0 if

0 < R < s(ω). The numbers N0(ω, σ,R), N∗
0 (ω, σ,R), and s(ω) do not change when

ω is replaced by an isomorphic structure, hence they are well defined for ω ∈ Q(p, n)
and ω ∈ MQ(p, n).

Proposition 8.8 Let M be a connected component of the moduli space MQ(p, n).
By M0 denote the set of ω ∈ M such that a(ω) ≤ 1. Then there exists c(M) > 0
such that for any σ ∈ [0, 1),

lim
ǫ→0

1

ǫ2

∫

M0

N∗
0 (ω, σ, ǫ) dµ(ω) = (1 − σ)K−2c(M),

where K is half of the dimension of M and µ denotes the canonical measure on M.

Proof. For any translation structure ω, N∗
0 (ω, σ, ǫ) is at most the number of saddle

connections of length s(ω) of ω. As such saddle connections are Delaunay edges, they
are disjoint by Proposition 5.2. Then Proposition 5.1 implies there exists C > 0 such
that N∗

0 (ω, σ, ǫ) ≤ C for all ω ∈ MQ(p, n).
By M′

0 denote the subset of M0 corresponding to translation structures that
have a regular periodic cylinder bounded by the shortest saddle connection. Clearly,
N∗

0 (ω, σ, ǫ) = 0 for ω ∈ M0 \ M′
0. Let π0 : Q(p, n) → MQ(p, n) be the natural

projection and µ̃ be the canonical measure on Q(p, n). First consider the case p = 1.
In this case M0 = MQ≤1(1, n). It is easy to see that the set π0(P

(n)(B(ǫ) ∩ R2
+))

contains almost all elements of M′
0 ∩ MQǫ(1, n) for any ǫ > 0. There exists a

mapping class φ ∈ Mod(p, n) of order n such that φτ (n) = τ (n) and φ sends L(n)

to a homologous edge. Any set of the form P (n)(U) is invariant under φ. Suppose
ω, ω′ ∈ P (n)(B(ǫ)∩R2

+)∩Qǫ,κ(p, n), κ > ǫ > 0. Then π0(ω) = π0(ω
′) only if ω′ = φmω

for some m. Also, in this case N∗
0 (ω, σ, ǫ) equals the number of indices i such that

ω ∈ P
(n)
σ,i (B(ǫ) ∩ R2

+). As shown in the proof of Lemma 8.2, µ̃(P
(n)
σ,i (B(ǫ) ∩ R2

+)) =

(1 − σ)n−1
m(B(ǫ) ∩ R2

+)c = (1 − σ)n−1πcǫ2/2, where c > 0. Since ǫ−2µ̃(P (n)(B(ǫ)) \
Qǫ,ǫ(1, n)) → 0 as ǫ→ 0, it follows that

lim
ǫ→0

ǫ−2

∫

M0

N∗
0 (ω, σ, ǫ) dµ(ω) = (1 − σ)n−1πc/2.

We proceed to the case p > 1. Consider an operation f0 = OPR[n0;D] =
OPR[n0;D′; τ, γ], where τ ∈ T (p, n) and γ is an edge of τ , and a family of sets
Y0(ǫ) = P (n0)[D](ǫU0;U1, . . . , Uk), ǫ > 0, where U0, U1, . . . , Uk satisfy the assump-
tions of Lemma 8.4. Further assume that U0 ⊂ B(1) and µ̃(Y0(ǫ)∩M(τ))/µ̃(Y0(ǫ)) →
1 as ǫ→ 0. Clearly, Y0(ǫ) ⊂ Qǫ

≤1(p, n). Any translation structure in an isotopy class
ω ∈ Y0(ǫ) has n0 regular cylinders of periodic geodesics homologous to γ. Suppose
ω ∈ Qǫ,κ

≤1(p, n) for some κ > ǫ. Then the cylinders homologous to γ are the only
periodic cylinders of length s(ω). It follows that N∗

0 (ω, 0, ǫ) = n0 while N∗
0 (ω, σ, ǫ) is

equal to the number of indices i such that ω ∈ P
(n0)
σ,i [D](ǫU0;U1, . . . , Uk). Therefore

∣∣∣
∫

Y0(ǫ)

N∗
0 (ω, σ, ǫ) dµ̃(ω) −

n0∑

i=1

µ̃(P
(n0)
σ,i [D](ǫU0;U1, . . . , Uk))

∣∣∣ ≤
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max(C, n0)µ̃(Y0(ǫ) \ Qǫ,ǫ
≤1(p, n)).

Note that µ̃(M(τ) ∩ Qǫ
≤1(p, n) \ Qǫ,ǫ

≤1(p, n)) ≤ cτǫ
4, where cτ depends on τ (see the

proof of Lemma 8.7). By assumption, µ̃(Y0(ǫ)\M(τ))/µ̃(Y0(ǫ)) → 0 as ǫ→ 0. Hence
Lemma 8.4 implies there exists c0 > 0 such that

lim
ǫ→0

ǫ−2

∫

Y0(ǫ)

N∗
0 (ω, σ, ǫ) dµ̃(ω) = (1 − σ)K−2c0.

For any ∆ > 0 we wish to find finitely many maps fi = OPR[ni;Di] and families
of sets Yi(ǫ) = P (ni)[Di](ǫUi0;Ui1, . . . , Uiki

), i = 1, . . . ,m, that satisfy the condi-
tions imposed above on f0 and Y0(ǫ). Besides, we require that π0(Yi(ǫ)) ⊂ M0,
each Yi(ǫ) be invariant under a mapping class φi ∈ Mod(p, n) of finite order oi,
ǫ−2|µ(π0(∪iYi(ǫ))) − ∑

i o
−1
i µ̃(Yi(ǫ))| → 0 as ǫ → 0, and µ(M′

0 ∩ MQǫ(p, n) \
π0(∪iYi(ǫ))) ≤ ∆ǫ2 for sufficiently small ǫ. First let us show how this helps to prove
the proposition. By the above

lim
ǫ→0

ǫ−2

∫

Yi(ǫ)

N∗
0 (ω, σ, ǫ) dµ̃(ω) = (1 − σ)K−2ci

for some ci > 0. Given ω ∈ M0, let ω ∈ Y ′(ǫ) if ω ∈ π0(Yi(ǫ)) ∩ π0(Yj(ǫ)) for some
i 6= j, let ω ∈ Y ′′(ǫ) if more than oi elements of some Yi(ǫ) are mapped to ω by π0,
and let ω ∈ Y ′′′(ǫ) if ω ∈ π0(Yi(ǫ)) for some i but π−1

0 (ω)∩Yi(ǫ) has less than oi ele-
ments. Any translation structure in an isomorphy class ω ∈ Y ′′′(ǫ) admits nontrivial
automorphism, therefore µ(Y ′′′(ǫ)) = 0. Observe that µ(π0(∪iYi(ǫ))) + µ(Y ′(ǫ)) ≤∑

i µ(π0(Yi(ǫ))) and
∑

i µ(π0(Yi(ǫ))) + (maxi oi)
−1µ(Y ′′(ǫ)) ≤ ∑

i o
−1
i µ̃(Yi(ǫ)). The

above assumptions imply ǫ−2µ(Y ′(ǫ) ∪ Y ′′(ǫ)) → 0 as ǫ → 0. Since N∗
0 (ω, σ, ǫ) is

uniformly bounded and there are only finitely many families Yi(ǫ), it follows that

lim
ǫ→0

ǫ−2

∫

π0(∪iYi(ǫ))

N∗
0 (ω, σ, ǫ) dµ(ω) = (1 − σ)K−2

∑

i

o−1
i ci.

Moreover, π0(∪iYi(ǫ)) ⊂ M0 and
∫

M0\π0(∪iYi(ǫ))

N∗
0 (ω, σ, ǫ) dµ(ω) ≤ C∆ǫ2

for small ǫ. As ∆ can be chosen arbitrarily small, the proposition follows.
It remains to fetch the needed maps fi and sets Yi(ǫ). The maps will be of the

form fi = OPR[ni;Di] = OPR[ni; D̃i1, . . . , D̃iki
; l̃i; τi, γi], D̃ij = (τij, er,ij, el,ij;Dij),

l̃i = (li1, . . . , liki
), where τi ∈ T (p, n). Recall that γi is an oriented edge of τi, er,ij

and el,ij are oriented edges of τij, and l̃i is a sequence of integers. We require that
if φτi = τi′ for some φ ∈ Mod(p, n) then τi = τi′ . Moreover, if φτi = τi′ and φ(γi)
is homologous to γi′ then τi = τi′ and γi = γi′ . If τij, τi′j′ ∈ T (p′, n′) and there
exists φ ∈ Mod(p′, n′) such that φτij = τi′j′ , φ(er,ij) = er,i′j′ , φ(el,ij) = el,i′j′ , then

D̃ij = D̃i′j′ . We assume f1, f2, . . . is a maximal list of maps satisfying the above
conditions. It is easy to see that the list is finite.

55



Suppose τ ∈ T (p′, n′) and er, el are oriented edges of τ . Choose an inserting oper-
ation f = INS[τ, er, el;D; τ ′, γ′]. For any v ∈ S1 and δ > 0 we define Uf (τ, er, el; v, δ)
as the set of ω ∈ N(τ) such that f(tv, ω) ∈ Mδ(τ

′) for all sufficiently small t > 0.
Assume f(tv, ω) is defined for small t > 0, that is, pairs of vectors (holω(er), v) and
(holω(el), v) induce the standard orientation in R2. Let βr (resp. βl) denote the angle
between holω(er) (resp. holω(el)) and v. Let T+

r be the triangle of τ such that er

bounds T+
r and the orientation of er agrees with the counterclockwise orientation

of the boundary of T+
r . Let T−

r be the other triangle of τ bounded by er. Let θ+
r

and θ−r denote the measures relative to translation structures in the class ω of the
angles of T+

r and T−
r opposite er. Similarly, we introduce triangles T+

l , T−
l and an-

gles θ+
l , θ−l . In the case er 6= el, the set Uf (τ, er, el; v, δ) does not depend on the

choice of f . Namely, ω ∈ Uf (τ, er, el; v, δ) if and only if ω ∈ Mδ(τ) and βr + θ+
r ,

π − βr + θ−r , π − βl + θ+
l , βl + θ−l are less than π − δ. In the case er = el, there are

two principal choices. The triangle T+
r corresponds to a triangle T ′ of τ ′. Let e′ be

the edge of T ′ corresponding to er and T ′
0 be the triangle separated from T ′ by e′.

Then γ′ is an edge of T ′
0. If T ′

0 lies to the right of γ′ then ω ∈ Uf (τ, er, el; v, δ) if and
only if ω ∈ Mδ(τ) and βr + θ+

r , βr + θ−r , 2(π − βr) are less than π − δ. Otherwise
ω ∈ Uf (τ, er, el; v, δ) if and only if ω ∈Mδ(τ) and π − βr + θ+

r , π − βr + θ−r , 2βr are
less than π − δ. In particular, if the angle between v, v′ ∈ S1 does not exceed δ′ < δ
then Uf (τ, er, el; v, δ) ⊂ Uf (τ, er, el; v

′, δ − δ′).
Choose δ > 0 such that π/δ is an integer and divide the semicircle S1 ∩ R2

+

into arcs of equal length δ. Suppose u is the interior of one of the arcs. Let U0u =
{tv | v ∈ u, 0 < t < 1}. By v0 denote the midpoint of u. For 1 ≤ j ≤ ki let fij

denote the jth inserting operation of those used when building fi. Given κ > 0, let
Uijuκ = Ufij

(τij, er,ij, el,ij; v0, δ) ∩ Q1(pij, nij) \ Qκ
1(pij, nij), where τij ∈ T (pij, nij).

Finally, let Yiuκ(ǫ) = P (ni)[Di](ǫU0u;Ui1uκ, . . . , Uikiuκ), ǫ > 0. Now we shall check
whether the families of sets Yiuκ(ǫ) satisfy the above conditions.

Suppose ω ∈ Uijuκ. Any Delaunay cell of a translation structure in the class
ω is isometric to the interior of a triangle inscribed in a circle of radius d. Since
ω ∈ Q1(pij, nij) \ Qκ

1(pij, nij), it follows from Lemma 5.4 that d ≤ d0, where d0 =

max(
√

2/π, κ−1). In particular, all Delaunay edges are of length at least κ and at
most 2d0. Then each angle θ of a Delaunay triangle satisfies sin θ ≥ κ/(2d0). Since
Uijuκ ⊂M(τij), it follows that the closure of Uijuκ is a compact subset ofN(τij). Note

that fij = INS[D̃ij; τ
′
ij, γ

′
ij] for some τ ′ij ∈ T (p′ij, n

′
ij). There exists ǫ0 = ǫ0(κ, δ) > 0

such that fij(v, ω) ∈Mδ/4(τ
′
ij) ∩Qǫ0,κ/2(p′ij, n

′
ij) for all v ∈ ǫ0U0u and ω ∈ Uijuκ.

Suppose ω = GLU [τ̃1, γ̃1, . . . , τ̃k, γ̃k; τ̃ , γ̃](ω1, . . . , ωk) and γ̃j (1 ≤ j ≤ k) is a
unique shortest edge of τ̃j relative to ωj. Any edge e of τ̃j different from γ̃j is
assigned a unique edge ẽ of τ̃ so that θe,τ̃j

(ωj) = θẽ,τ̃ (ω). Since the angle opposite
the shortest side of a triangle does not exceed π/3, we have θγ̃,τ̃ (ω) ≤ 2π/3 and
θγ̃j ,τ̃j

(ωj) ≤ 2π/3. By Proposition 5.3, ω ∈ M(τ̃) if and only if ωj ∈ M(τ̃j) for
1 ≤ j ≤ k. Further suppose ω′ = GLU [τ̃ ′1, γ̃

′
1, . . . , τ̃

′
k′ , γ̃′k′ ; τ̃ ′, γ̃′](ω′

1, . . . , ω
′
k), where γ̃′j

is a unique shortest edge of τ̃ ′j relative to ω′
j. Assume that ω ∈ M(τ̃), ω′ ∈ M(τ̃ ′),

and holω(γ̃), holω′(γ̃′) ∈ R2
+. Then ω is isomorphic to ω′ if and only if k = k′ and for
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some 1 ≤ k0 ≤ k the classes ω1, . . . , ωk are isomorphic to ω′
k0
, . . . , ω′

k, ω
′
1, . . . , ω

′
k0−1,

respectively.
All mapping classes φi ∈ T (p, n) such that φiτi = τi and φi sends γi to a ho-

mologous edge form a cyclic subgroup. Assume φi generates this subgroup. The
order oi of φi divides ki and ni. For any ω = fi(ω0, ω1, . . . , ωki

) one has ωφ−1
i =

fi(ω0φ
−1, ωk, . . . ωki

, ω1, . . . , ωk−1), where 1 ≤ k ≤ ki and φ ∈ Mod(1, ni) is such
that φτ (ni) = τ (ni) and φ(L(ni)) is homologous to L(ni). It follows that each Yiuκ(ǫ)
is invariant under φi.

Let ω = fij(v, ω0), ω
′ = fi′j′(v

′, ω′
0), where ω0 ∈ M(τij), ω

′
0 ∈ M(τi′j′), and

v, v′ ∈ R2
+. Suppose |v|, |v′| ≤ ǫ and ω ∈ M(τ ′ij) ∩ Qǫ,κ′

(p′ij, n
′
ij), ω

′ ∈ M(τ ′i′j′) ∩
Qǫ,κ′

(p′i′j′ , n
′
i′j′) for some κ′ > ǫ. Then ω is isomorphic to ω′ if and only if i = i′,

j = j′, v = v′, and ω0 = ω′
0. Now let ω ∈ Yiuκ(ǫ), ω

′ ∈ Yi′u′κ(ǫ). Suppose ω ∈
M(τi)∩Qǫ,κ′

(p, n) and ω′ ∈M(τi′)∩Qǫ,κ′

(p, n) for some κ′ > ǫ. Then it follows from
the above that π0(ω) = π0(ω

′) only if i = i′, u = u′, and ω is mapped to ω′ by an
iterate of φi.

Using techniques of the proof of Lemma 8.4, we derive from the above that as
ǫ → 0, µ̃(Yiuκ(ǫ) ∩M(τi))/µ̃(Yiuκ(ǫ)) → 1, ǫ−2|µ̃(Yiuκ(ǫ)) − oiµ(π0(Yiuκ(ǫ)))| → 0,
and ǫ−2µ(π0(Yiuκ(ǫ)) ∩ π0(Yi′u′κ(ǫ))) → 0 unless i = i′ and u = u′.

Suppose ω ∈ S(τ, γ; ǫ, 2κ, 2δ) for some τ ∈ T (p, n). As S(τ, γ; ǫ, 2κ, 2δ) does not
depend on the orientation of γ, we orient γ so that holω(γ) belongs to the closure of
R2

+. Then holω(γ) is in the closure of ǫU0u for an arc u. Assume holω(γ) ∈ ǫU0u. Note
that this assumption holds for almost all elements of S(τ, γ; ǫ, 2κ, 2δ). First we apply
a cutting operation to ω and γ. Let (ω′

1, . . . , ω
′
k) = CUT [τ, γ; τ ′1, γ

′
1, . . . , τ

′
k, γ

′
k](ω),

where τ ′j ∈ T (p′j, n
′
j), 1 ≤ j ≤ k. Clearly, each τ ′j has no edge homologous to γ′j.

In the case p′j = n′
j = 1, it is no loss to assume that τ ′j = τ (1), γ′j = L(1); then

ω′
j ∈ P (1). If none of ω′

j belongs to Q(1, 1) then π0(ω) /∈ M′
0. Assume this is not

the case. Choose j such that (p′j, n
′
j) 6= (1, 1) (this is possible as p > 1). Then ω′

j ∈
S(τ ′j, γ

′
j; ǫ, 2κ, 2δ) ⊂ M2δ(τ

′
j) ∩ Qǫ,2κ

≤1 (p′j, n
′
j) assuming 2δ < π/3. There exists ǫ1 =

ǫ1(κ, δ) > 0 such that any collapsing operation of the form COL[τ ′j, γ
′
j;D′; τ̃ , ẽr, ẽl]

is defined on S(τ ′j, γ
′
j; ǫ, 2κ, 2δ) for ǫ ≤ ǫ1. If ω̃ = COL[τ ′j, γ

′
j;D′; τ̃ , ẽr, ẽl](ω

′
j) then

ω′
j = g(holω(γ), ω̃), where g = INS[τ̃ , ẽr, ẽl;D; τ ′j, γ

′
j] for a set D of parameters.

Consequently, ω can be obtained by an operation OPR[D̃; τ, γ]. Assuming ǫ is small
enough, one has ω̃ ∈ Ug(τ̃ , ẽr, ẽl; v0, δ), where v0 is the midpoint of u. Also, ω̃ = tω̃0,
where t > 0, a(ω̃0) = 1, and s(ω̃0) > κ. Note that D depends on D′, moreover, any D
corresponds to some D′. It follows that we can choose the cutting and the collapsing
operations so that g = fi′j′ for some i′, j′. Then ω̃0 ∈ Ui′j′uκ. The conditions imposed
above on f1, f2, . . . imply that ωφ−1 ∈ Yiuκ(ǫ) for some i and φ ∈ Mod(p, n) such that
φτ = τi and φ(γ) is homologous to γi. Thus for small ǫ the set π0(S(τ, γ; ǫ, 2κ, 2δ))∩
M′

0 is contained in π0(∪i,uYiuκ(ǫ)) up to a subset of zero volume. Since the Mod(p, n)
action on T (p, n) has only finitely many orbits, it follows from Lemma 8.7 that we
can choose κ and δ so that µ(M′

0 ∩MQǫ(p, n) \ π0(∪i,uYiuκ(ǫ))) ≤ ∆ǫ2 for small ǫ.
The only condition not verified yet is π0(Yiuκ(ǫ)) ⊂ M0. It surely holds when the

moduli space MQ(p, n) is connected. If this is not the case, we have to modify the
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construction slightly. Suppose U ′
j, 1 ≤ j ≤ ki, is a connected component of the open

set Uijuκ. Then sets Y (ǫ) = P (ni)[Di](ǫU0u;U
′
1, . . . , U

′
ki

) are connected by Lemma 8.4.
Hence sets π0(Y (ǫ)) are either contained in M0 or disjoint from M0. Clearly, Yiuκ(ǫ)
is the disjoint union of at most countably many sets of the form Y (ǫ). The mapping
class φi permutes these sets. Now we replace Yiuκ(ǫ) by a finite number of subsets of
the form Y (ǫ). For any ∆ > 0 this finite number can be chosen so that the union of
the other subsets has volume at most ∆ǫ2. Then we discard sets whose projections
to MQ(p, n) are disjoint from M0. Also, among sets Y (ǫ), Y (ǫ)φ−1

i , Y (ǫ)φ−2
i , . . . we

discard all but one. The construction is completed.

Proof of Proposition 7.4. Let C be a connected component of MQ1(p, n) and
µ0 be the canonical measure on C. The formula (11) can be rewritten as follows:

b(σ, ǫ) =
1

µ0(C)

∫

C

N0(ω, σ, ǫ) dµ0(ω).

Besides, let

b∗(σ, ǫ) =
1

µ0(C)

∫

C

N∗
0 (ω, σ, ǫ) dµ0(ω).

First we estimate the difference b(σ, ǫ)− b∗(σ, ǫ). Clearly, N0(ω, 0, ǫ) ≥ N0(ω, σ, ǫ) ≥
N∗

0 (ω, σ, ǫ) ≥ 0 for all ω ∈ C. If ω /∈ MQǫ
1(p, n) then N0(ω, σ, ǫ) = 0. If ω ∈

MQǫ,κ
1 (p, n) for some κ > ǫ, then N0(ω, σ, ǫ) = N∗

0 (ω, σ, ǫ). It follows that for any
κ > ǫ,

0 ≤ b(σ, ǫ) − b∗(σ, ǫ) ≤ 1

µ0(C)

∫

C∩MQǫ
1(p,n)\MQǫ,κ

1 (p,n)

N0(ω, 0, ǫ) dµ0(ω).

By Theorem 7.3, there exist c0, κ0 > 0 such that N0(ω, 0, ǫ) ≤ c0(ǫ/s(ω))3/2 for all
ω ∈ C and ǫ < κ0. Suppose ω ∈ C ∩ MQǫ

1(p, n) \ MQǫ,κ
1 (p, n), where ǫ < κ ≤ κ0.

Obviously, s(ω) ≤ ǫ, hence 4−k−1ǫ < s(ω) ≤ 4−kǫ for an integer k ≥ 0. Then

ω ∈ MQ4−kǫ
1 (p, n) \MQ4−kǫ,κ

1 (p, n) and N0(ω, 0, ǫ) ≤ (4k+1)3/2c0. It follows that

b(σ, ǫ) − b∗(σ, ǫ) ≤ c0
µ0(C)

∞∑

k=0

8k+1µ0(MQ4−kǫ
1 (p, n) \MQ4−kǫ,κ

1 (p, n))

provided ǫ < κ ≤ κ0. Furthermore, Theorem 8.5 implies that

b(σ, ǫ) − b∗(σ, ǫ) ≤ c0cp,n

µ0(C)

∞∑

k=0

8k+14−2kǫ2κ2 =
16c0cp,n

µ0(C)
ǫ2κ2,

where cp,n > 0 is a constant. As κ can be chosen arbitrarily small, it follows that

lim
ǫ→0

ǫ−2(b(σ, ǫ) − b∗(σ, ǫ)) = 0.

Now we estimate b∗(σ, ǫ). By C∞ denote the connected component of MQ(p, n)
containing C. Clearly, C∞ = {tω | ω ∈ C, t > 0}. For any t > 0 let Ct denote the set
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of ω ∈ C∞ such that a(ω) ≤ t. Let µ be the canonical measure on C∞. For all ω ∈ C
and t > 0 we have a(tω) = t2, s(tω) = t · s(ω), and N∗

0 (ω, σ, ǫ) = N∗
0 (tω, σ, tǫ). It

follows that

b∗(σ, ǫ) =
1

µ(C1)

∫

C1

N∗
0 (ω, σ, ǫ

√
a(ω)) dµ(ω).

For any σ ∈ [0, 1) and positive ǫ, t, α let

b0(σ, ǫ; t, α) =

∫

Ct

N∗
0 (ω, σ, ǫ

√
α) dµ(ω).

Denote by K half of the dimension of C∞. By Proposition 8.8, there exists c > 0
such that ǫ−2b0(σ, ǫ; 1, 1) → (1 − σ)K−2c as ǫ→ 0. For arbitrary t and α we have

b0(σ, ǫ; t, α) = tK
∫

C1

N∗
0 (t1/2ω, σ, ǫ

√
α) dµ(ω) = tKb0(σ, ǫ

√
α/t; 1, 1),

therefore
lim
ǫ→0

ǫ−2b0(σ, ǫ; t, α) = tK−1α(1 − σ)K−2c.

Suppose 0 < t1 < t2. Then

b0(σ, ǫ; t2, t1) − b0(σ, ǫ; t1, t1) ≤
∫

Ct2\Ct1

N∗
0 (ω, σ, ǫ

√
a(ω)) dµ(ω) ≤ b0(σ, ǫ; t2, t2) − b0(σ, ǫ; t1, t2).

It follows that for any integer k > 0 we have b−k (σ, ǫ) ≤ µ(C1)b
∗(σ, ǫ) ≤ b+k (σ, ǫ),

where

b−k (σ, ǫ) =
k∑

i=1

(
b0(σ, ǫ; i/k, (i− 1)/k) − b0(σ, ǫ; (i− 1)/k, (i− 1)/k)

)
,

b+k (σ, ǫ) =
k∑

i=1

(
b0(σ, ǫ; i/k, i/k) − b0(σ, ǫ; (i− 1)/k, i/k)

)
.

By the above,

lim
ǫ→0

ǫ−2b−k (σ, ǫ) = (1 − σ)K−2c
k∑

i=1

i− 1

k

(( i
k

)K−1

−
(i− 1

k

)K−1)
,

lim
ǫ→0

ǫ−2b+k (σ, ǫ) = (1 − σ)K−2c
k∑

i=1

i

k

(( i
k

)K−1

−
(i− 1

k

)K−1)
.

In particular, limǫ→0 ǫ
−2(b+k (σ, ǫ) − b−k (σ, ǫ)) = k−1(1 − σ)K−2c. As k can be chosen

arbitrarily large, this implies that

lim
ǫ→0

ǫ−2b∗(σ, ǫ) = (1 − σ)K−2 c

µ(C1)

∫ 1

0

t dtK−1.
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Since ǫ−2(b(σ, ǫ) − b∗(σ, ǫ)) → 0 as ǫ→ 0, it follows that

lim
ǫ→0

b(σ, ǫ)

b(0, ǫ)
= lim

ǫ→0

b∗(σ, ǫ)

b∗(0, ǫ)
= (1 − σ)K−2.

It remains to notice that K = 2p+ n− 1.
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