1. Let

$$
f(x, y)=x y-2 x+5
$$

Find the absolute maximum and minimum values of f on the set D which is the closed triangular region with vertices $\mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(0,1)$.
2. For

$$
\int_{0}^{3} \int_{y^{2}}^{9} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

(a) sketch the region of integration;
(b) change the order of integration.
3. Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$, above the $x y$-plane, and inside the cylinder $x^{2}+y^{2}=4$.
4. Convert the integral

$$
\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{x^{2}+y^{2}}} x y z \mathrm{~d} z \mathrm{~d} x \mathrm{~d} y
$$

to an integral in cylindrical coordinates, but don't evaluate it.
5. Let C be the line segment starting at $(0,1,1)$ and ending at $(3,1,4)$.
a) Find parametric equations for C.
b) Find the mass of a thin wire in the shape of C with the density $\rho(x, y)=x+y$.
6. A particle moves along the curve $C: \vec{r}(t)=\left\langle t^{3}, t^{2}, t\right\rangle$ from the point $(1,1,1)$ to the point $(8,4,2)$ due to the force $\vec{F}(x, y, z)=\langle z, y, x\rangle$. Find the work done by the force.
7. Use Green's Theorem to compute the integral along the given positively oriented curve C:

$$
\int_{C}\left(y^{2}-\arctan x\right) \mathrm{d} x+(3 x+\sin y) \mathrm{d} y
$$

where C is the boundary of the region enclosed by the parabola $y=x^{2}$ and the line $y=4$.
8. Convert the integral $\int_{0}^{3} \int_{0}^{\sqrt{9-y^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y$ to an integral in spherical coordinates, but don't evaluate it.
9. Find the absolute maximum and minimum values of $f(x, y)=x^{2} y+x y^{2}+y^{2}-y$ on the set D which is the closed rectangular region in the $x y$-plane with vertices $(0,0)$, $(0,2),(2,0)$ and $(2,2)$.
10. Evaluate the integral by reversing the order of integration:

$$
\int_{0}^{3} \int_{y^{2}}^{9} y \cos \left(x^{2}\right) \mathrm{dxdy}
$$

11. Find the mass of the lamina that occupies the region bounded by the parabola $x=y^{2}$ and the line $y=x-2$ and has the density $\rho(x, y)=3$.
12. Find the volume of the solid region E in the first octant bounded by the paraboloid $z=x^{2}+y^{2}$, the cone $z=\sqrt{x^{2}+y^{2}}$ and the coordinate planes.
13. Use Green's Theorem to compute the integral

$$
\int_{C}\left(12-x^{2} y-y^{3}+\tan x\right) \mathrm{d} x+\left(x y^{2}+x^{3}-e^{y}\right) \mathrm{d} y
$$

where C is positively oriented boundary of the region enclosed by the circle $x^{2}+y^{2}=$ 4. Sketch the curve C indicating the positive direction.
14. Let $\mathbf{F}(x, y)=\left\langle 2 x+y^{2}+3 x^{2} y, 2 x y+x^{3}+3 y^{2}\right\rangle$.
(a) Show that \mathbf{F} is conservative vector field.
(b) Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ where C is the arc of the curve $y=x \sin x$ from $(0,0)$ to $(\pi, 0)$.
(Hint: use the previous part.)
15. Find the mass of the tetrahedron with vertices $(0,0,0),(1,0,0),(0,2,0)$ and $(0,0,4)$, if the density is $\rho=x$.
16. Find the volume of the solid that lies under the paraboloid $z=4-x^{2}-y^{2}$ and above the $x y$-plane.
17. Find the line integral of the vector field $\mathbf{F}(x, y, z)=\left\langle-y z^{2}, x z^{2}, z^{3}\right\rangle$ around the circle $\mathbf{r}(t)=\langle 2 \cos t, 2 \sin t, 8\rangle$.
18. Find the dimensions and volume of the largest rectangular solid box which sits on the xy-plane and has its upper vertices on the paraboloid $z=4-4 x^{2}-y^{2}$.
19. Find the mass of the quarter circle $x^{2}+y^{2} \leq 9$ for $x \geq 0$ and $y \geq 0$ if the density is $\rho(x, y)=\sqrt{x^{2}+y^{2}}$.
20. Find the center of mass of the quarter circle $x^{2}+y^{2} \leq 9$ for $x \geq 0$ and $y \geq 0$ if the density is $\rho(x, y)=\sqrt{x^{2}+y^{2}}$.
21. Find the volume of the cone $z=2 \sqrt{x^{2}+y^{2}}$ below the paraboloid $z=8-x^{2}-y^{2}$.

