1. Verify Stokes' Theorem $\iint_{S} \operatorname{curl} \vec{F} \cdot \mathrm{~d} \vec{S}=\int_{\partial S} \vec{F} \cdot \mathrm{~d} \vec{r}$ for the vector field $\vec{F}=\left\langle y z^{2},-x z^{2}, z^{3}\right\rangle$ and the cylinder $x^{2}+y^{2}=9$ for $1 \leq z \leq 2$ oriented out.
2. Find the absolute maximum and minimum values of the function $f(x, y)=1+x y-x-y$ on the region D bounded by the parabola $y=x^{2}$ and the line $y=4$.
3. Evaluate the surface integral $\iint_{S} y \mathrm{~d} S$, where S is the part of the plane $3 x+2 y+z=6$ that lies in the first octant.
4. Find the mass of the conical surface $z=\sqrt{x^{2}+y^{2}}$ for $z \leq 2$ with density $\rho(x, y)=x^{2}+y^{2}$.
5. Verify Green's Theorem for the vector field $\mathbf{F}(x, y)=\left\langle-x^{2} y, x y^{2}\right\rangle$ on the region inside the circle $x^{2}+y^{2}=16$.
6. Find the absolute maximum and minimum of the function $f(x, y)=\frac{1}{8} x^{4}-x^{2}+2+y^{2}$ on the square determined by the four points $A(4,4), B(-4,4), C(4,-4), D(-4,-4)$.
7. Find the absolute maximum and minimum of the function $f(x, y)=x^{3}-x y+y^{2}-x$ on $D=\{(x, y): x \geq 0, y \geq 0, x+y \leq 2\}$.
8. Determine the equation of the plane tangent to the surface $\vec{r}(u, v)=\left\langle u^{2}+v, u^{2}-v, 2 u v\right\rangle$ at the point $(10,8,6)$.
9. Let $\vec{F}(x, y)=\left\langle x+y^{2}, 2 x y+y^{2}\right\rangle$.
a) Show that \vec{F} is conservative vector field.
b) Compute $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ where C is any path from $(-1,0)$ to $(2,2)$.
10. Let $\vec{F}(x, y, z)=\left\langle 4 x e^{z}, \cos y, 2 x^{2} e^{z}\right\rangle$.
a) Show that \vec{F} is conservative vector field.
b) Compute $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ where $C: \mathbf{r}(t)=\left\langle t, t^{2}, t^{4}\right\rangle, 0 \leq t \leq 1$.
11. Consider the surface S parameterized by $\vec{r}(\theta, z)=\langle 3 \cos \theta, 3 \sin \theta, z\rangle$ where $0 \leq \theta \leq$ $\pi, \quad 0 \leq z \leq 2$.
a) Find the normal vector $\vec{N}(\theta, z)$ to the surface S;
b) Find $|\vec{N}(\theta, z)|$;
c) Find $\iint_{S} y z \mathrm{dS}$.
12. Apply the Divergence Theorem to compute $\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}$ for the vector field $\vec{F}(x, y, z)=$ $\left\langle x^{3}, y^{3}, x+y\right\rangle$ over the complete boundary S of the solid paraboloid $\left\{(x, y, z): x^{2}+y^{2} \leq\right.$ $z \leq 1\}$ with outward normal.
13. Verify that Stokes' Theorem is true for the vector field $\mathbf{F}=\left\langle x^{2}, y^{2}, z^{2}\right\rangle$ where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies above the $x y$-plane, and S has upward orientation.
14. Use Stokes' Theorem to evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}=\langle x y, y z, z x\rangle$ and C is the triangle with vertices $(1,0,0),(0,1,0)$ and $(0,0,1)$, oriented counterclockwise as viewed from above.
15. Evaluate $\iint_{S} y \mathrm{dS}$ where S is the surface $z=x+y^{2}, 0 \leq x \leq 1,0 \leq y \leq 2$. (Hint: parametrize S, find the parameter domain, normal and its magnitude.)
16. Apply the Divergence Theorem to compute

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

for the vector field

$$
\mathbf{F}(x, y, z)=\left\langle x^{3}+\sin (y z), y^{3}, y+z^{3}\right\rangle
$$

over the complete boundary S of the solid hemisphere

$$
\left\{(x, y, z): x^{2}+y^{2}+z^{2} \leq 1, z \geq 0\right\}
$$

with outward normal.
17. Verify Stokes' Theorem

$$
\oint_{\partial S} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}
$$

for the vector field $\mathbf{F}=\left\langle y,-x, x^{2}+y^{2}\right\rangle$ and the surface S which is the part of the paraboloid $z=x^{2}+y^{2}$ between $z=0$ and $z=1$ with normal pointing up and in.
Use the following steps:
(a) Sketch the surface S, indicate its boundary, indicate and explain the orientations (on S and on ∂S).
(b) Compute the line integral.
(Hint: parameterize the boundary circle ∂S and compute $\oint_{\partial S} \mathbf{F} \cdot \mathrm{dr}$.)
(c) Compute the surface integral.
(Hint: parametrize the paraboloid, indicate the parameter domain, find the normal and determine its direction, compute curlF and $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$).
18. Find the point where the line $x=2-t, y=1+3 t, z=4 t$ intersects the plane $2 x-y+z=4$. At this point $x+y+z=$
a. 9
b. -3
c. 0
d. 3
e. -9
19. The equation of the plane tangent to the surface $z e^{\frac{x z}{y}}=1$ at $(x, y, z)=\left(0, \frac{1}{2}, 1\right)$ is
a. $\quad \frac{1}{2} x+z-1=0$
b. $x=0$
c. $2 x+z-1=0$
d. $2 x+y+z=\frac{3}{2}$
e. $2 x-y+z=\frac{1}{2}$
20. Use the linear approximation to $f(x, y)=\sqrt{x} e^{y}$ to estimate (approximate) the value $\sqrt{0.99} e^{0.02}$
a. $\quad 1.03$
b. 0.975
c. 1.025
d. 1.015
e. 1.01
21. Compute $\int_{C} \vec{F} \cdot \mathrm{~d} \vec{r}$ where $\vec{F}(x, y, z)=\left\langle x, e^{y}, 2 z\right\rangle$ and C is any path from $(5,1,2)$ to $(-1,1,3)$. Hint: Find a potential.
a. 7
b. 25
c. -25
d. 0
e. -7
22. The temperature at a point (x, y, z) is given by $T(x, y, z)=e^{-(x+y+z)^{3}}$. The maximum rate of change of T at the point $P\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$ is
a. $\sqrt{3}$
b. e^{-1}
c. $-3 \sqrt{3} e^{-1}$
d. $\sqrt{3} e^{-1}$
e. $3 \sqrt{3} e^{-1}$
23. For the function $f(x, y)=x y^{2}+x^{3}-2 x y$ the point $(x, y)=\left(\frac{1}{\sqrt{3}}, 1\right)$ is
a. a local minimum
b. a local maximum
c. a saddle point
d. not a critical point
e. is a critical point but the Second Derivative Test fails.
24. A particle moves along the curve $\vec{r}(t)=\langle\sin t, \cos t, t\rangle$ from the point $(0,1,0)$ to the point $(0,-1, \pi)$ due to the force $\vec{F}(x, y, z)=\left\langle y,-x, \frac{2 z}{\pi}\right\rangle$. The work done by the force is
a. $1+\frac{1}{\pi}$
b. 3π
c. π
d. $\frac{1}{\pi}$
e. 2π
25. The integral

$$
\int_{C}\left(x^{2} y+\frac{y^{2}}{2}\right) \mathrm{d} x+\left(x y+\frac{x^{3}}{3}+3 x\right) \mathrm{d} y
$$

where C is the positively oriented triangle with vertices $(0,0),(1,0),(0,1)$.
Hint: Use Green's Theorem.
a. $-\frac{3}{2}$
b. $-\frac{1}{12}$
c. $\frac{3}{2}$
d. 0
e. $\frac{1}{12}$
26. Compute $\iint_{S} \vec{F} \cdot \mathrm{~d} \vec{S}$ for the vector field

$$
\vec{F}(x, y, z)=\left\langle x^{3}+z \sin y, y^{3}+x^{2} y, x^{2} z+2 y^{2} z\right\rangle
$$

over the complete boundary S of the solid cylinder

$$
\left\{(x, y, z): x^{2}+y^{2} \leq 4,0 \leq z \leq 5\right\}
$$

with outward normal.
Hint: Use the Divergence Theorem.
a. $\frac{400}{3} \pi$
b. $\frac{80}{3} \pi$
c. 100π
d. 200π
e. 40π
27. Let D be the region bounded by the parabola $x=1-y^{2}$ and the coordinate axes in the first quadrant. Find the mass of the lamina that occupies the region D if the density function is $\rho(x, y)=y$.
a. $\frac{1}{2}$
b. 1
c. $\frac{1}{12}$
d. $\frac{2}{3}$
e. $\frac{1}{4}$
28. Find the volume of the solid region which lies above the paraboloid $z=x^{2}+y^{2}$ and below the cone $z=\sqrt{x^{2}+y^{2}}$.
a. $\frac{\pi}{2}$
b. $\frac{\pi}{6}$
c. $\frac{\pi}{3}$
d. π
e. 2π

