QUIZ 10 MATH 251
 LAST NAME
 \qquad FIRST NAME
 \qquad

On my honor, as an Aggie, I certify that the solution submitted by me on 26th of April 2011 is my own work. I had neither given nor received unauthorized aid on this work.

Signature: \qquad
Due TUESDAY 4/26/2011 at the beginning of class.

- If turned in later than 10 minutes into class, 5 points off. No papers will be accepted after class.
- If you turn it in to my office (Milner 324), place it in my mailbox (Milner 130) or e-mail a PDFversion to me, make sure you do it before 2:00 p.m., Tuesday 4/26/2011.
- You MUST show ALL your work to get full credit. Just writing the answers down is not enough.

BOX YOUR FINAL ANSWERS.

1. Given the line integral $I=\int_{C} 4 x^{2} y \mathrm{~d} x-(2+x) \mathrm{d} y$ where C consists of the line segment from $(0,0)$ to $(2,-2)$, the line segment from $(2,-2)$ to $(2,4)$, and the part of the parabola $y=x^{2}$ from $(2,4)$ to $(0,0)$. Use Green's theorem to evaluate the given integral and sketch the curve C indicating the positive direction.
2. Given the surface $S: x=v^{3}-5 u, y=u^{2}, z=v^{2}-3$.
(a) Find the normal vector to S at the point corresponding to $(u, v)=(1,2)$.
(b) Write the equation of the tangent plane to S passing through the point corresponding to $(u, v)=(1,2)$. Simplify it.
3. Let S be a unit hemisphere of radius 1. Use surface integral to find the surface area of S. Hint: Use spherical coordinates to parametrize the surface. Also find D, the parameter domain.
4. Evaluate the surface integral $\iint_{S}(y+2) \mathrm{d} S$ where S is the portion of the cylinder $x^{2}+z^{2}=1$ between the planes $y=-2$ and $y=z+3$ (note that S does not include the ends of the cylinder.) Hint: The surface of the cylinder may be parameterized by cylindrical coordinates: $x=r \cos \theta, y=y, z=r \sin \theta$. What is r here? Note that $-2 \leq y \leq z+3$.
