QUIZ 9 MATH 251

LAST NAME \qquad FIRST NAME \qquad ROW \qquad

On my honor, as an Aggie, I certify that the solution submitted by me on 7th of April 2011 is my own work. I had neither given nor received unauthorized aid on this work.

Signature:

Due THURSDAY 4/7/2011 at the beginning of class.

- If turned in later than 10 minutes into class, 5 points off. No papers will be accepted after class.
- If you turn it in to my office (Milner 324), place it in my mailbox (Milner 130) or e-mail a PDF-version to me, make sure you do it before 2:00 p.m., Thursday 4/7/2011.
- You MUST show ALL your work to get full credit. Just writing the answers down is not enough.
- Your work must be neat, easy to follow.
- You may use notes and textbook, but not the help of anything else.

- BOX YOUR FINAL ANSWERS.

1. Use cylindrical coordinates to evaluate the integral $\iiint_{E} z \mathrm{~d} V$ where E is the solid that lies inside the cylinder $x^{2}+y^{2}=9$, above cone $z=\sqrt{x^{2}+y^{2}}$ and below the plane $z=15$.
2. Sketch the solid whose volume is given by the integral $\int_{0}^{\pi / 2} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi$.
3. Find the mass of a solid E that lies between the spheres of radius 2 and 3 and is in the first octant with density $\rho(x, y, z)=z e^{\left(x^{2}+y^{2}+z^{2}\right)^{2}}$.
4. Given the function $f(x, y, z)=x+y^{2}+z$, the vector field $\mathbf{F}(x, y, z)=\left\langle z^{2},-z, 2 y\right\rangle$ and the curve C which is the line segment from $(1,0,1)$ to $(1,3,5)$.
(a) Write down the vector function $\mathbf{r}(t)$ for the curve C.
(b) Evaluate the line integral $\int_{C} f(x, y, z) \mathrm{d} s$.
(c) Evaluate the line integral $\int_{C} \mathbf{F}(x, y, z) \cdot \mathrm{d} \mathbf{r}$.
