24: Toward the case of repeated eigenvalues: matrix exponential (section 7.7)

1. Recall that the Taylor expansion of the exponential function e^{x} is

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots=\sum_{i=0}^{\infty} \frac{x^{i}}{i!} \tag{1}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
e^{r t}=1+t r+\frac{t^{2}}{2!} r^{2}+\frac{t^{3}}{3!} r^{3}+\ldots=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} r^{i} . \tag{2}
\end{equation*}
$$

In particular, in the previous notes, section 14, item 11 there, we used this formula to prove that

$$
\begin{equation*}
\frac{d}{d t} e^{r t}=r e^{r t} \tag{3}
\end{equation*}
$$

for any complex r.
2. Now replace the number x by an $n \times n$ matrix A in (1) (replacing also the number 1 in the very first term by the $n \times n$ identity matrix I) to obtain another $n \times n$ matrix e^{A} called the matrix exponential of A :

$$
\begin{equation*}
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\ldots=\sum_{i=0}^{\infty} \frac{1}{i!} A^{i} \tag{4}
\end{equation*}
$$

Then we can consider $e^{t A}$ (a matrix-values function assigning to any t the matrix exponential of the matrix $t A$),

$$
\begin{equation*}
e^{t A}=I+t A+\frac{t^{2}}{2!} A^{2}+\frac{t^{3}}{3!} A^{3}+\ldots=\sum_{i=0}^{\infty} \frac{t^{i}}{i!} A^{i} . \tag{5}
\end{equation*}
$$

and exactly as for (6) one can obtain from this that

$$
\begin{equation*}
\frac{d}{d t} e^{t A}=A e^{t A} \tag{6}
\end{equation*}
$$

This implies that for any column vector v the vector function $e^{t A} v$ is a solution of the system $X^{\prime}=A X$.
3. One says that n vectors v^{1}, \ldots, v^{n} constitute a basis in \mathbb{R}^{n} if any other vector v in \mathbb{R}^{n} can be uniquely represented as a linear combination of v^{1}, \ldots, v^{n}, i.e. there exist constants c_{1}, \ldots, c_{n} such that

$$
v=c_{1} v^{1}+\ldots c_{n} v^{n} .
$$

Equivalently, v^{1}, \ldots, v^{n} constitute a basis in \mathbb{R}^{n} if and only if $\operatorname{det}\left(v^{1}, \ldots, v^{n}\right) \neq 0$.
Based on the previous item, if $v^{1}, \ldots v^{n}$ constitute a basis of \mathbb{R}^{n}, then

$$
\begin{equation*}
\left\{e^{t A} v^{1}, e^{t A} v^{2}, \ldots, e^{t A} v^{n}\right\} \tag{7}
\end{equation*}
$$

form a fundamental set of solutions of A

The big question: How to calculate $e^{A t}$ or how to find a convenient basis v^{1}, \ldots, v^{n} for which $e^{A t} v^{i}$ can be effectively calculated for every $i=1, \ldots, n$?
4. Note that in contrast to numbers for matrices $e^{A} e^{B} \neq e^{B} e^{A}$. However, if the matrices A and B commute, $A B=B A$ then $e^{A} e^{B}=e^{B} e^{A}$ (just take the products of their Taylor expansion and use commutativity). Moreover, if $A B=B A$, then $e^{A+B}=e^{A} e^{B}$, which is not true in general.
5. If $A=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$, the diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal, then $e^{t A}=\operatorname{diag}\left\{e^{t \lambda_{1}}, \ldots, e^{t \lambda_{n}}\right\}$

In particular, if $A=\lambda I, \mathrm{~A}$ is the diagonal matrix with all entries on the diagonal being equal, then $e^{t \lambda I}=e^{\lambda t} I$
6. Note that the matrix λI commutes with any other matrix. Therefore using the previous two items we can get the following formula that will be crucial in the sequal:

$$
\begin{equation*}
e^{t A}=e^{\lambda t} e^{t(A-\lambda I)} \tag{8}
\end{equation*}
$$

7. Why the formula (8) is useful. Assume that λ is an eigenvalue and v is the corresponding eigenvector. Then calculate $e^{t A} v$ using (8)

So, $e^{t A} v=e^{\lambda t} v$ as expected by our previous considerations (see section 21, item 3.)
8. Conclusion: As a consequence of item 3 above (see the sentence including formula (7), if an $n \times n$ matrix A admits a basis of eigenvectors $v^{1}, \ldots v^{n}$ in \mathbb{R}^{n}, then $\left(e^{t \lambda_{1}} v^{1}, \ldots, e^{t \lambda_{n}} v^{n}\right)$ form a fundamental set of solutions of $X^{\prime}=A X$.

Note that we could derive it without using matrix exponential and (7), but the matrix exponential gives a way that works in more general situation.
9. The life is not so simple: not any $n \times n$ matrix admits a basis of eigenvectors in \mathbb{R}^{n}.

EXAMPLE 1. Let $N=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$
(a) Find all eigenvectors of N. Can you choose eigenvectors of N that constitute a basis of \mathbb{R}^{2}
(b) Calculate $e^{t N}$.

