25: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues in case $n=2$ (sec. 7.8)

1. We have seen that not every matrix admits a basis of eigenvectors. First, discuss a way how to determine if there is such basis or not.

Recall the following two equivalent characterization of an eigenvalue:
(a) λ is an eigenvalue of $A \Leftrightarrow \operatorname{det}(A-\lambda I)=0$;
(b) λ is an eigenvalue of $A \Leftrightarrow$ there exist a nonzero vector v such that $(A-\lambda I) v=0$. The set of all such vectors together with the 0 vector form a vector space called the eigenspace of λ and denoted by E_{λ}.

Based on these two characterizations of an eigenvalue λ of a matrix A one can assign to λ the following two positive integer numbers,

- Algebraic multiplicity of λ is the multiplicity of λ in the characteristic polynomial $\operatorname{det}(A-x I)$, i.e. the maximal number of appearances of the factor $(x-\lambda)$ in the factorization of the polynomial $\operatorname{det}(A-x I)$.
- Geometric multiplicity of λ is the dimension $\operatorname{dim} E_{\lambda}$ of the eigenspace of λ, i.e. the maximal number of linearly independent eigenvectors of λ.

2. For example, if $N=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ (as in the example in item 9 of the previous notes), then $\lambda=0$ is the unique eigenvalue. Find the algebraic multiplicity and geometric multiplicity of $\lambda=0$

THEOREM 1. Geometric multiplicity is not greater than algebraic multiplicity.

THEOREM 2. A matrix A admits a basis of eigenvectors if and only of for every its eigenvalue λ the geometric multiplicity of λ is equal to the algebraic multiplicity of λ.

REMARK 3. In Linear Algebra matrices admitting a basis of eigenvectors are called diagonizable (because they are diagonal in this basis).

REMARK 4. Basis of eigenvectors always exists for the following classes of matrix:

- symmetric matrices: $A^{T}=A$, or equivalently, $a_{i j}=a_{j i}$ for all i, j;
- skew-symmetric $A^{T}=-A$, or equivalently, $a_{i j}=-a_{j i}$ for all i, j.

For symmetric matrices all eigenvalues are real and the the eigenspaces corresponding to the different eigenvalues are orthogonal. For skew-symmetric matrices the eigenvalues are purely imaginary (i.e. of the for $i \beta$.
3. If the matrix A does not admit a basis of eigenvectors then for what vectors w other than the eigenvectors it is still easy to calculate $e^{A t} w$ in the light of the formula

$$
\begin{equation*}
e^{t A}=e^{\lambda t} e^{t(A-\lambda I)} \tag{1}
\end{equation*}
$$

(see item 6 of the previous lecture notes)?
4. Assume that w is such that

$$
\begin{equation*}
(A-\lambda I) w \neq 0, \text { but }(A-\lambda I)^{2} w=0 \tag{2}
\end{equation*}
$$

(the first relation means that w is not an eigenvector corresponding to λ). Calculate $e^{A t} w$ using (1).
5. More generally if we assume that for some $k>0$

$$
\begin{equation*}
(A-\lambda I)^{k-1} w \neq 0, \text { but }(A-\lambda I)^{k} w=0 \tag{3}
\end{equation*}
$$

then $e^{A t} w$ can be calculated using only finite number of terms when expanding $e^{t(A-\lambda I)} w$ from (1).

Note that if for some λ there exists w satisfying (3) then λ must be an eigenvalue
6.

DEFINITION 5. A vector w satisfying (3) for some $k>0$ is called a generalized eigenvector of λ (of order k).
The set of all generalized eigenvectors of λ together with the 0 vector is a vector space denoted by $E_{\lambda}^{\text {gen }}$

REMARK 6. The (regular) eigenvector is a generalized eigenvector of order 1 , so $E_{\lambda} \subset E_{\lambda}^{\text {gen }}$ (given two sets A and B, the notation $A \subset B$ means that the set A is a subset of the set B, i.e. any element of the set A belongs also to B)

THEOREM 7. The dimension of the space $E_{\lambda}^{\mathrm{gen}}$ of generalized eigenvectors of λ is equal to the algebraic multiplicity of λ.

THEOREM 8. Any matrix A admits a basis of generalized eigenvectors.

Let us see how it all works in the first nontrivial case of $n=2$.
7. Let A be 2×2 matrix and λ is a repeated eigenvalue of A. Then its algebraic multiplicity is equal to \qquad
There are two options for the geometric multiplicity:
1 (trivial case) Geometric multiplicity of λ is equal to 2 . Then $A=\lambda I$
2. (less trivial case) Geometric multiplicity λ is equal to 1 . In the rest of these notes we concentrate on this case only.
8.

PROPOSITION 9. Let w be a nonzero vector which is not an eigenvector of $\lambda, w \notin E_{\lambda}$. The vector w satisfies $(A-\lambda I)^{2} w=0$, ie. w is a generalized eigenvector of order 2? Besides, in this case

$$
\begin{equation*}
v:=(A-\lambda I) w \tag{4}
\end{equation*}
$$

is an eigenvector of A corresponding to λ.
9. Note that $\{v, w\}$ constructed above constitute a basis of \mathbb{R}^{2} (i.e. $E_{\lambda}^{\text {gen }}=\mathbb{R}^{2}$, so we proved Theorem 8 in this case. Therefore, $\left\{e^{t A} v, e^{t A} w\right\}$ form a fundamental set of solutions for the system $X^{\prime}=A X$. By constructions and calculation as in item 4 above
$e^{t A} v=$
$e^{t A} w=$

Conclusion:

$$
\begin{equation*}
\left\{e^{\lambda t} v, e^{\lambda t}(w+t v)\right\} \text {. } \tag{5}
\end{equation*}
$$

form a fundamental set of solutions of $X^{\prime}=A X$, i.e. the general solution is

$$
\begin{equation*}
e^{\lambda t}\left(C_{1} v+C_{2}(w+t v)\right) \text {. } \tag{6}
\end{equation*}
$$

10. This gives us the following algorithms for fining the fundamental set of solutions in the case of a repeated eigenvalue λ with geometric multiplicity 1 .

Algorithm 1 (easier than the one in the book):
(a) Find the eigenspace E_{λ} of λ by finding all solutions of the system $(A-\lambda I) v=0$. The dimension of this eigenspace under our assumptions must be equal to _.
(b) Take any vector w not lying in the eigenline E_{λ} and find $v:=(A-\lambda I) w$. With chosen v and w the general solution is given by (6).

Algorithm 2 (as in the book):
(a) Find an eigenvector v by finding one nonzero solution of the system $(A-\lambda I) v=0$.
(b) With v found in item 1 find w suh that $(A-\lambda I) w=v$. With chosen v and w the general solution is given by (6).

REMARK 10. The advantage of Algorithm 1 over Algorithm 2 is that in the first one you solve only one linear system when finding the eigenline, while in Algorithm 2 you need to solve one more linear system $(A-\lambda I) w=v$ for w (in Algorithm 1 you choose w and then find v from (4) instead).
11. Finally let us give another algorithm which works only in the case $n=2$ (for higher n it works only under some additional assumption that A has only one eigenvalue). This algorithm does not use eigenvetors explicitly (although implicitly we use here the information that an eigenvalue λ is repeated). Proposition 9 actually implies that

$$
\begin{equation*}
(A-\lambda I)^{2}=0 \tag{7}
\end{equation*}
$$

then based on (1) and (7)
$e^{t A}=$

Conclusion:

$$
\begin{equation*}
e^{A t}=e^{\lambda t}(I+t(A-\lambda I)) \tag{8}
\end{equation*}
$$

Algorithm 3: Calculate $e^{t A}$ from (8). The columns of the resulting matrix form a fundamental set of solutions.

REMARK 11. Identity (7) is in fact a particular case of the followiing remarkable result from Linear Algebra, called Caley-Hamilton: Let

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=(-1)^{n}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right) \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
A^{n}+a_{n-1} A^{n-1}+\ldots+a_{1} A+a_{0} I=0 \tag{10}
\end{equation*}
$$

In other words if one substitutes the matrix A instead of λ and $a_{0} I$ instead of a_{0} into the right hand side of (10) then you will get 0 .
12. Example. Find general solution of the system.: $\left\{\begin{array}{l}x_{1}^{\prime}=-3 x_{1}+\frac{5}{2} x_{2} \\ x_{2}^{\prime}=-\frac{5}{2} x_{1}+2 x_{2}\end{array}\right.$

