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27: Repeated Eigenvalues continued: n = 3 with an eigenvalue of alge-

braic multiplicity 3 (discussed also in problems 18-19, page 437-439 of

the book)

1. We assume that 3× 3 matrix A has one eigenvalue λ1 of algebraic multiplicity 3. It means

that there is no other eigenvalues and the characteristic polynomial of a is equal

to .

Also we have the following three options for geometric multiplicities of λ1: , , or .

REMARK 1. If among all 3× 3 matrices with an eigenvalue with multiplicity 3 one picks

up a matrix randomly, then with probability 1 the geometric multiplicity of this eigenvalue

will be equal to 1.

REMARK 2. For a system of first order linear homogeneous equation that comes from a

scalar linear homogeneous equation of higher order, the geometric multiplicity of any eigen-

value is equal to 1. This also shows that the theory of linear systems of first order is more

general than the theory of scalar eauations of higher order: not every system comes from a

single higher order equation.

2. Actually the considered case can be immediately treated by the Cayley-Hamilton Theorem

by analogy with Algorithm 3 for n = 2: the characteristic polynomial of A is equal to

−(x− λ1)3 so

(A− λI)3 = 0

Using this we have that

etA = eλ1tet(A−λ1I) = eλ1t
(
I + t(A− λ1I) +

t2

2
(A− λ1I)2

)
(1)

Then the columns of the resulting matrix form a fundamental set of solutions.

REMARK 3. As a matter of fact if the geometric multiplicity of λ1 is greater than 1, then

the formula (1) can be simplified:

• if geometric multilicity of λ1 is 3, then A = λ1I, i.e. A− λ1I = 0 so (1) simplifies to

etA = eλ1tI; (2)

• if geometric multilicity of λ1 is 2, then A−λ1I 6= 0 but (A−λ1I)2 = 0, so (1) simplifies

to

etA = eλ1t
(
I + t(A− λI)

)
; (3)

(A− λ1I)w1 = v
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• if geometric multilicity of λ1 is 1, then (A − λ1I)2 6= 0 (but (A − λ1I)3 = 0), so (1)

cannot be simplified.

However, the method of the item above will not work if one has an eigenvalue of algebraic

multilicity 3 for n > 3, therefore I would like to present the scheme that uses eigenspaces

and generalized eigenspaces (i.e. analogous to Algorithms 1 and 2).

3. The case when λ1 has the geometric multiplicity equal to 3 is simple. In this case the

eigenspace Eλ1 = R3, so A = λ1I which means that A = λ1I and so the formula (2) holds.

4. The case when λ1 has the geometric multiplicity equal to 2:

• In this case dimEλ1 =

• Then dimE
(2)
λ1

=

Explanation:

• Therefore we have the following analog of Algorithm 1:

(a) Suppose we found Eλ1 and it is 2-dimensional. Then take any w which is not in

Eλ1 . Then w is a generalized eigenvector of order . Set

v1 = (A− λ1I)w

Then v1 is a generalized eigenvector of order , i.e. v1 is an eigenvector of λ1.

(b) Choose another eigenvector v2 of λ1 which is not collinear to v1, so that v1 and v2

form a basis of the eigenspace Eλ1 .

(c) Then {v1, w, v2} form a basis of generalized eigenvectors in R3 (with v1 and v2

being eigenvectors and w being a generalized eigenvector of order 2) and so

(etAv1, e
tAw, etAv2} = {eλ1tv1, eλ1t(w + tv1), e

λ1tv2}

form a fundamental set of solutions of X ′ = AX.
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• You can try to build an analog of Algorithm 2 here (see also discussions in Problem 19

on page 438-439 of the book): First find the eigenspace Eλ1 , which is a plane. The

problem here that, if we choose some eigenvector v, the system

(A− λ1I)w = v (4)

does not have necessarily a solution, so you need to choose a specific v in Eλ1 for which

(4) has a solution (see item (c) of Problem 19, page 439). In contrast, Algorithm

1 does not have this problem at all, so it is certainly more efficient in this

and more general situations than the Algorithm 2.

5. The case when λ1 has the geometric multiplicity equal to 1:

• In this case dimEλ1 =

• Then dimE
(2)
λ1

=

• Then dimE
(3)
λ1

= , so E
(3)
λ1

= R3

• Analog of Algorithm 1:

(a) Suppose we already found the spaces Eλ1 (by solving the system (A− λ1I)v = 0)

and it is 1-dimensional as expected. Then we find the space E2
λ1

by solving the

system (A− λ1I)2w = 0. E2
λ1

must be 2-dimensional;

(b) Choose any vector w2 which is not in the plane E2
λ1

. Then w2 is the generalized

eigenvector of order . Then set

w1 := (A− λ1I)w2, v = (A− λ1I)w1

(c) Then w1 is a generalized eigenvector of order and v is a generalized eigenvector

of order . Also, vectors {v, w1, w2} form a basis of R3 and

etAv =

etAw1 =

etAw2 =

So

{eλ1v, eλ1t(w1 + tv), eλ1t(w2 + tw1 +
t2

2
v} (5)

form a fundamental set of solutions of the system X ′ = AX.
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• Analog of Algorithm 1:

(a) Choose an eigenvector v (all eigenvector are collinear one to each other);

(b) Find w1 such that (A− λ1I)w1 = v;

(c) Find w2 such that (A− λ1I)w2 = w1;

(d) Proceed as in the item (c) of the previous algoritm.

REMARK 4. In general the geometric and algebraic multiplicity are not the only

characteristics of an eigenvalue as in the small dimensional examples we discusssed.

In higher dimensions there are additional characteristics related to partitions of an

algebraic multiplicities into the sum of positive integers, then the geometric multiplicity

is the number of terms in the partition. This is related to the theory of elementary

divisors.


