6. Exact Equations (section 2.6)

1. Consider a first order differential equation

$$
\begin{equation*}
P(x, y)+Q(x, y) y^{\prime}=0 \quad(\text { or } \quad P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y=0) \tag{1}
\end{equation*}
$$

with P and Q having continuous partial derivatives in the region R of \mathbb{R}^{2}.
DEFINITION 1. The equation (1) is called exact on the region R if there exists a differentiable function function Φ on the region \mathbb{R} such that

$$
\left\{\begin{array}{l}
\Phi_{x}(x, y)=P(x, y) \tag{2}\\
\Phi_{y}(x, y)=Q(x, y)
\end{array}\right.
$$

for every $(x, y) \in R$.
REMARK 2. Note that exact equations are very special: system (2) is the system of two equations for one unknown function Φ and it does not have a solution for an arbitrary choice of the pair of functions (P, Q). In order that the system (2) will have a solution the pair (P, Q) must satisfy a certain compatibility condition (see equation (3) below)
2. Assume that Φ satisfies the system (2). Then $y(x)$ is a solution of the equation (1) if and only if
$\frac{d}{d x} \Phi(x, y(x))=$
In other words, an exact equation (1) represents the exact differential of the function $\Phi(x, y)$., i.e $d \Phi=0$ (this is the origin of the word exact).

Therefore,

$$
\Phi(x, y(x)) \equiv C
$$

for some constant C.
CONCLUSION Any integral curve $y=y(x)$ of an exact equation (1) lies on a level curve of the function $\Phi(x, y)$ and the general solution of equation (1) is given in an implicite form by

$$
\Phi(x, y)=C
$$

3. EFFECTIVE TEST for Exactness: If ODE (1) is exact on the region R, then

$$
\begin{equation*}
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \quad \text { on } R \tag{3}
\end{equation*}
$$

PROPOSITION 3. If the region R is simply connected (i.e. without holes, for example $R=\mathbb{R}^{2}$) then $O D E$ (1) is exact on R if and only if the relation (3) holds on R.
4. Determine whether the following ODE are exact:
(a) $3 x^{2}-2 x y+2+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0$
(b) $\left(3 x^{2} y+2 x y+y^{3}\right) \mathrm{d} x+\left(x^{2}+y^{2}\right) \mathrm{d} y=0$

REMARK 4. If you are asked to verify exactness you are not allowed to multiply (or divide) you equation by a nonconstant function: such operation will destroy the exactness.
5. Relation to the topic of "Conservative Vector Fields" from Calculus-3 (Stewart, Section 14.3) Consider the vector field $\vec{F}=\langle P, Q\rangle$ in the region R. The system (2) is equivalent to the equation

$$
\begin{equation*}
\operatorname{grad} \Phi=\vec{F} \tag{4}
\end{equation*}
$$

In other words, vector fields \vec{F} is conservative, the function Φ is a potential of \vec{F} and (3) is the test to check whether \vec{F} is conservative in a simply connected region R.

CONCLUSION: A general solution to an exact differential equation can be found by the method used in Calculus 3 to find a potential function for a conservative vector field in a plane region.
6. Solve $3 x^{2}-2 x y+2+\left(6 y^{2}-x^{2}+3\right) y^{\prime}=0$.

