8. Autonomous and non-autonomous first order differential equations and systems, vector fields and direction fields (sections 1.1, 7.1)

1. Consider the first order ODE

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=F(t, y) . \tag{1}
\end{equation*}
$$

We work in much more general setting than in section 1.1: $y(t)$ is in $\mathbb{R}^{n}, y(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)$, F is a vector function, consisting of n functions of $n+1$ variables $\left(t, y_{1}, \ldots, y_{n}\right)$,

$$
F(t, y)=\left(F_{1}\left(t, y_{1}, \ldots, y_{n}\right), \ldots, F_{n}\left(y_{1}, \ldots, y_{n}\right)\right),
$$

so that (1) is a system of n differential equations of first order with unknown function $y_{1}(t), \ldots y_{n}(t)$:

DEFINITION 1. The equation/system (1) is called autonomous if the right-hand side of it is independent of t, i.e. is of the form $F(y)$,

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=F(y) \tag{2}
\end{equation*}
$$

and non-autonomous otherwise.
REMARK 2. Autonomous equations(systems) are special first order equations (systems). However, any non-autonomous system on n unknown functions $\left(y_{1}, \ldots, y_{n}\right)$ of t can be seen as an autonomous system in $n+1$-unknown functions as follows:
2. Vector fields and autonomous first order systems:
(a) A vector field F on \mathbb{R}^{n} : at each point y of \mathbb{R}^{n} a vector $F(y)$ starting at this point y is given.
(b) An integral curve $y(t)$ of a vector field F is a curve such that the velocity $y^{\prime}(t)$ to it at every its point $y(t)$ (or, equivalently, at every time momemt t) coincides with the vector fields F at this point, i.e. with the vector $F(y(t))$.

In other words,

$$
y^{\prime}(t)=F(y(t))
$$

i.e. $y(t)$ is an integral curve of the field F if and only of it is a solution of the autonomous equation (2)

3. Directional fields and (non-autonomous) first order systems:

(a) A direction field on \mathbb{R}^{n+1} with coordinates (t, y), where $y \in R^{n}$: at each point of \mathbb{R}^{n+1} a straight line passing through this point is given such that a vector generated this line has non-zero t-component.

Hence this generating vectors can be given in the form $(1, F(t, y))$.
(b) An integral curve of a direction field is a curve in \mathbb{R}^{n+1} of the form $(t, y(t))$ such that the velocity to this curve at every its point $(t, y(t))$ is in the direction of the straight line of the direction field given at this point.

So, if the lines of the direction field are generated by vectors of the form $(1, F(t, y))$, then the curve $(t, y(t))$ is an integral curve of this direction field if and only if

$$
y^{\prime}(t)=F(t, y(t)),
$$

i.e. $y(t)$ is a solution of the system (1).

The field of directions generated by vectors of the form $(1, F(t, y))$ is called the direction field of the first order equation/system (1).
4. Case $n=1$, i.e. of the first order equation
(a) in this case $y=y(t)$ is a solution of the ODE $y^{\prime}=F(t, y)$ if and only if at each point $(t, y(t))$ of this curve the tangent line to the graph of $y(t)$ has slope $F(t, y)$.

So, the direction field of the first order ODE (1) is the direction field such that the line at the point (t, y) has a slope $F(t, y)$.
(b) To sketch direction field use the following steps:

- Choose a rectangular grid of points in the $t y$-plane.
- Calculate the slopes of tangent lines to the integral curves at the gridpoints.
- Draw a short line segment of the tangent lines through the gridpoints.

Note: More gridpoints \Longrightarrow better description of integral curves (general shape of solution).
(c) FALLING HAILSTONE Consider hailstone with mass $m=0.03 \mathrm{~kg}$ and drag coefficient $\gamma=$ $0.006 \mathrm{~kg} / \mathrm{s}$
i. Write down the ODE describing the motion of the hailstone.
ii. Sketch the direction field
iii. We can use Matlab to get directional field:
$[t, v]=\operatorname{meshgrid}(0: 0.4: 8,30: 1.2: 60)$;
$\mathrm{S}=9.8-0.2^{*} \mathrm{v}$;
quiver($\mathrm{t}, \mathrm{v}, \mathrm{ones}(\operatorname{size}(\mathrm{S})), \mathrm{S})$, axis tight

