11. Solutions of linear homogeneous equations of second order. The Wronskian (section 3.2).

1. Second order ODE:

$$
y^{\prime \prime}=f\left(t, y, y^{\prime}\right)
$$

where f is a function whose domain is in \mathbb{R}^{3}. A solution of such an equation is a function $y=y(t)$, twice differentiable in some interval I, s.t. for all t in I

$$
y^{\prime \prime}(t)=f\left(t, y(t), y^{\prime}(t)\right) .
$$

2. By Newton's Second Law $F=m a$. We know that acceleration $a(t)$ is the second derivative of position $x(t)$, which yields

$$
x^{\prime \prime}=\frac{1}{m} F\left(x, x^{\prime}\right) .
$$

3. Find general solution of $y^{\prime \prime}=0$.
4. Reduction to the system of first order ODEs by a substitution:

- Particular case $y^{\prime \prime}=f\left(t, y^{\prime}\right)$ use the substitution $u=y^{\prime}$.
- General case $y^{\prime \prime}=f\left(t, y, y^{\prime}\right)$ use the substitution $x_{1}=y, \quad x_{2}=x_{1}^{\prime}$.

5. By analogy with the existence and uniqueness theorem for a single first order ODE we have THEOREM 1. If $f, \frac{\partial f}{\partial x_{1}}$ and, $\frac{\partial f}{\partial x_{2}}$ are continuous in a region

$$
R=\left\{\alpha<t<\beta, \quad \alpha_{1}<x_{1}<\beta_{1}, \quad \alpha_{2}<x_{2}<\beta_{2}\right\}
$$

then there exists a unique solution through a point $\left(t_{0}, y_{0}, v_{0}\right)$ in R (equivalently, there is an interval $t_{0}-h<t<t_{0}+h$ in which there exists a unique solution of the IVP $\left.y^{\prime \prime}=f\left(t, y, y^{\prime}\right), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=v_{0}.\right)$
6. Second order linear ODE:

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)
$$

or

$$
y^{\prime \prime}=-p(t) y^{\prime}-q(t) y+g(t)
$$

where p, q, and g are continuous on an interval $I=(\alpha, \beta)$
7. By analogy with the existence and uniqueness theorem for a linear first order ODE we have THEOREM 2. If the functions $p(t), q(t)$ and $g(t)$ are continuous on the interval then for any $t=t_{0}$ on I, there is a unique solution $y=y(t)$ of the IVP

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=v_{0} \tag{1}
\end{equation*}
$$

Linear HOMOGENEOUS ODE of second order

8. Question: Can the function $y=\sin \left(t^{2}\right)$ be a solution on the interval $(-1,1)$ of a second order linear homogeneous equation with continuous coefficients?
9. Consider a linear homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

with coefficients p and q continuous in an interval I.

10. Superposition Principle

- Sum $y_{1}(t)+y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2) is itself a solution.
- A scalar multiple $C y(t)$ of any solution $y(t)$ of (2) is itself a solution.

COROLLARY 3. Any linear combination $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2) is itself a solution.
11. Why Superposition Principle is important? Once two (linearly independent) solutions of a linear homogeneous equation are known, a whole class of solutions is generated by linear combinations of these two.
12. WRONSKIAN of the functions $y_{1}(t)$ and $y_{2}(t)$:

$$
W\left(y_{1}, y_{2}\right)(t)=\left|\begin{array}{ll}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)
$$

13. What does Wronskian measure? Note that

$$
\frac{d}{d t}\left(\frac{y_{2}(t)}{y_{1}(t)}\right)=\frac{y_{1}(t) y_{2}^{\prime}(t)-y_{2}(t) y_{1}^{\prime}(t)}{y_{1}^{2}(t)}=\frac{W\left(y_{1}, y_{2}\right)(t)}{y_{1}^{2}(t)}
$$

This shows that $y_{2}(t)=C y_{1}(t)$ on an interval I for some constant C if and only if $W\left(y_{1}, y_{2}\right)(t) \equiv 0$ (more precisely, for the if part you need additional assumptions, for example, that $\frac{y_{1}(t)}{y_{2}(t)}$ is differentiable on $\left.I\right)$.
14. Suppose that $y_{1}(t)$ and $y_{2}(t)$ are two differentiable solutions of (2) in the interval I such that $W\left(y_{1}, y_{2}\right)(t) \neq 0$ somewhere in I, then every solution is a linear combination of $y_{1}(t)$ and $y_{2}(t)$.

In other words, the family of solutions $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ with arbitrary coefficients C_{1} and C_{2} includes every solution of (2) if and only if there is a points t_{0} where $W\left(y_{1}, y_{2}\right)$ is not zero. In this case the pair $\left(y_{1}(t), y_{2}(t)\right)$ is called the fundamental set of solutions of (2).

REMARK 4. Wronskian $W\left(y_{1}, y_{2}\right)(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (2) either is zero for all t or else is never zero.
15. Confirm that $\sin x$ and $\cos x$ are solutions of $y^{\prime \prime}+y=0$. Then solve the IVP

$$
y^{\prime \prime}+y=0, \quad y(\pi)=0, \quad y^{\prime}(\pi)=-5
$$

Appendix: Facts from Algebra

1. - FACT 1: Cramer's Rule for solving the system of equations

$$
\begin{aligned}
a_{1} x+b_{1} y & =c_{1} \\
a_{2} x+b_{2} y & =c_{2}
\end{aligned}
$$

The rule says is that if the determinant of the coefficient matrix is not zero, i.e.

$$
\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right| \neq 0,
$$

then the system has a unique solution (x, y) given by

$$
x=\frac{\left|\begin{array}{ll}
c_{1} & b_{1} \\
c_{2} & b_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}, \quad y=\frac{\left|\begin{array}{ll}
a_{1} & c_{1} \\
a_{2} & c_{2}
\end{array}\right|}{\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|}
$$

- FACT 2: If determinant of the coefficient matrix is zero then either there is no solution, or there are infinitely many solutions.
- FACT 3. The homogeneous system of linear equations

$$
\begin{aligned}
a_{1} x+b_{1} y & =0 \\
a_{1} x+b_{2} y & =0
\end{aligned}
$$

always has the "trivial" solution $(x, y)=(0,0)$. By Cramer's rule this is the only solution if the determinant of the coefficient matrix is not zero.

- FACT 4: If determinant of the coefficient matrix of homogeneous system of linear equations is zero then there are infinitely many nontrivial solutions $(x, y) \neq(0,0)$.

2. Use Facts 1-4 to determine if each the following systems of linear equations has one solution, no solutions, infinitely many solutions. Then find the solution/s (if any).
(a) $2 x+3 y=5$
$x-y=4$
(b) $2 x-2 y=4$ $x-y=7$
(c) $\begin{aligned} 2 x-2 y & =0 \\ 3 x+3 y & =0\end{aligned}$
(d) $\begin{array}{r}2 x-2 y=0 \\ 3 x-3 y=0\end{array}$
