12. Linear homogeneous equations of second order with constant coefficients the case of distinct roots of characteristic equation (sec. 3.1)

1. PROBLEM: Find general solutions of linear homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

with constant real coefficients a, b, and c.
2. Recall that

- By Superposition Principle: Any linear combination $C_{1} y_{1}(t)+C_{2} y_{2}(t)$ of any two solutions $y_{1}(t)$ and $y_{2}(t)$ of (3) is itself a solution.
- The family of solutions $y(t)=C_{1} y_{1}(t)+C_{2} y_{2}(t)$ with arbitrary coefficients C_{1} and C_{2} includes every solution of (3) if and only if there is a points t_{0} where $W\left(y_{1}, y_{2}\right)$ is not zero. In this case the pair $\left(y_{1}(t), y_{2}(t)\right)$ is called the fundamental set of solutions of (3).

3. To find a fundamental set for the equation (3) note that the nature of the equation suggests that it may have solutions of the form

$$
y=e^{r t}
$$

Plug in and get so called characteristic equation of (3):

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

Note that the characteristic equation can be determined from its differential equation simply by replacing $y^{(k)}$ with r^{k}.
4. Solve $y^{\prime \prime}-16 y^{\prime}=0$.
5. Fact from Algebra: The quadratic equation $a r^{2}+b r+c=0$ has roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

which fall into one of 3 cases:

- two distinct real roots $r_{1} \neq r_{2}$ (in this case $D=b^{2}-4 a c>0$) [section 3.1]
- two complex conjugate roots $r_{1}=\overline{r_{2}}$ (in this case $D=b^{2}-4 a c<0$) [section 3.3]
- two equal real roots $r_{1}=r_{2}$ (in this case $D=b^{2}-4 a c=0$) [section 3.4]

Case 1: Two distinct real roots $\left(D=b^{2}-4 a c>0\right)$
6. Two distinct real roots r_{1} and r_{2} of the characteristic equation give us two solutions

$$
y_{1}(t)=e^{r_{1} t}, \quad y_{2}(t)=e^{r_{2} t} \quad\left(r_{1} \neq r_{2}\right)
$$

Is this a fundamental set of solutions?
7. Consider

$$
3 y^{\prime \prime}-y^{\prime}-2 y=0
$$

(a) Find general solution.
(b) Find solution satisfying the following initial conditions: $y(0)=\alpha, y^{\prime}(0)=1$, where α is a real parameter.
(c) Find all α so that the solution of the corresponding IVP approaches 0 as $t \rightarrow+\infty$.
8. Consider

$$
y^{\prime \prime}+(a+1) y^{\prime}+(a-2)(1-2 a) y=0
$$

where a is a real parameter.
(a) Determine the values of the parameter a, if any, for which all solutions tend to zero as $t \rightarrow \infty$.
(b) Determine the value of the parameter a, if any, for which all (nonzero) solutions become unbounded as $t \rightarrow \infty$.

13. The case of equal (or repeated) roots (section 3.4)

(a) Case 3: two equal/repeated real roots $r_{1}=r_{2}$ (in this case

$$
\left.D=b^{2}-4 a c=0\right)
$$

(b) Recall that the characteristic equation of a linear homogeneous equation with constant real coefficients

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3}
\end{equation*}
$$

is

$$
\begin{gather*}
a r^{2}+b r+c=0 \tag{4}\\
D=b^{2}-4 a c=0 \Rightarrow r_{1}=r_{2}=-\frac{b}{2 a}
\end{gather*}
$$

So, we found one particular solution $y_{1}(t)=e^{r_{1} t}$.
(c) How to find a second particular solution y_{2} such that the set $\left\{y_{1}, y_{2}\right\}$ will be fundamental, i.e. $W\left(y_{1}, y_{2}\right) \neq 0$?
The method actually works both for distinct and repeated roots.
If r_{1} and r_{2} are roots of the characteristic equation (4), then

$$
a r^{2}+b r+c=a\left(r-r_{1}\right)\left(r-r_{2}\right)
$$

Then use "factorization" (in Leibnitz notation):
$a y^{\prime \prime}+b y^{\prime}+c y=a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} t}+c y=\left(a \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}+b \frac{\mathrm{~d}}{\mathrm{~d} t}+c\right)[y]=a\left(\frac{\mathrm{~d}}{\mathrm{~d} t}-r_{1}\right)\left[\left(\frac{\mathrm{d}}{\mathrm{d} t}-r_{2}\right)[y]\right]=0$
(d) $\left\{y_{1}, y_{2}\right\}=\left\{e^{r t}, t e^{r t}\right\}$ is fundamental set. Thus the general solution of (3) is

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

(e) Consider $y^{\prime \prime}-6 y^{\prime}+9 y=0$.
i. Find general solution.
ii. Find solution subject to the initial conditions $y(0)=2, y^{\prime}(0)=\alpha$.
iii. For each α what is the behavior of the solutions as $t \rightarrow+\infty$?

