20. Basic Theory of Systems of First Order Linear Equations (sec. 7.4) System of homogeneous linear equations
21. Consider a system of first order linear homogeneous DE:

$$
\begin{equation*}
X^{\prime}=P(t) X \tag{1}
\end{equation*}
$$

Superposition Principle: If the vector functions X_{1} and X_{2} are solutions of the homogeneous system (1), then the linear combination $C_{1} X_{1}+C_{2} X_{2}$ is also a solution for any constants C_{1}, C_{2}.
2. Given the following system

$$
X^{\prime}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
-2 & 0 & -1
\end{array}\right) X
$$

Show that the vector functions

$$
X_{1}=\left(\begin{array}{c}
2 \cos t \\
-\cos t+\sin t \\
-2 \cos t-2 \sin t
\end{array}\right), \quad X_{2}=\left(\begin{array}{c}
0 \\
e^{t} \\
0
\end{array}\right)
$$

are solutions of the given system. Discuss a linear combination of these solutions.
3. Consider IVP

$$
\begin{equation*}
X^{\prime}=P(t) X, \quad X\left(t_{0}\right)=b . \tag{2}
\end{equation*}
$$

By Superposition Principle, if the vector functions

$$
X_{1}(t)=\left(\begin{array}{c}
x_{11}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right), \ldots, X_{n}(t)=\left(\begin{array}{c}
x_{1 n}(t) \\
\vdots \\
x_{n n}(t)
\end{array}\right)
$$

are solutions of the homogeneous system (1), then the linear combination

$$
X(t)=C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t)
$$

is also a solution of (1) for any constants C_{1}, \ldots, C_{n}.
Question: How to determine the the constants C_{1}, \ldots, C_{n} corresponding to the given IVP?
4. Consider the matrix, whose columns are vectors $X_{1}(t), \ldots, X_{n}(t)$:

$$
\Psi(t)=\left(\begin{array}{ccc}
x_{11}(t) & \ldots & x_{1 n}(t) \\
\vdots & \vdots & \vdots \\
x_{n 1}(t) & \ldots & x_{n n}(t)
\end{array}\right) .
$$

Then $B=X\left(t_{0}\right)=C_{1} X_{1}\left(t_{0}\right)+\ldots+C_{n} X_{n}\left(t_{0}\right)=\Psi\left(t_{0}\right)\left(\begin{array}{c}C_{1} \\ \vdots \\ C_{n}\end{array}\right)$, equivalently,

$$
\Psi\left(t_{0}\right)\left(\begin{array}{c}
C_{1} \\
\vdots \\
C_{n}
\end{array}\right)=b
$$

We can find a solution for any initial condition given by vector column b if and only if $\operatorname{det} \Psi\left(t_{0}\right) \neq 0$.

EXPLANATION:
5. Note that this determinant is called the Wronskian of the solutions X_{1}, \ldots, X_{n} and is denoted by

$$
W\left[X_{1}, \ldots, X_{n}\right](t)=\operatorname{det} \Psi(t)
$$

6. Note that by analogy with section $3.2, \operatorname{det} \Psi\left(t_{0}\right) \neq 0 \operatorname{implies} \operatorname{det} \Psi(t) \neq 0$ for any t.
7. If $\operatorname{det} \Psi(t) \neq 0$ then X_{1}, \ldots, X_{n} is called the fundamental set of solutions and the general solution of the system (1) is $C_{1} X_{1}(t)+\ldots+C_{n} X_{n}(t)$.
8. Given that the vector functions $X_{1}=\binom{e^{-2 t}}{-e^{-2 t}}$ and $X_{2}=\binom{3 e^{6 t}}{5 e^{6 t}}$ are solutions of the system $X^{\prime}=\left(\begin{array}{ll}1 & 3 \\ 5 & 3\end{array}\right) X$. Find general solution of these system.
9. Question: How to find a fundamental set of solutions? In the next section we answer it for the case $P(t)=$ const, i.e. for system of linear homogeneous equations with constant coefficients.
10. Find general solution of $X^{\prime}=A X$, where $A=\left(\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right)$. (uncoupled system)

21. System of homogeneous linear equations with constant coefficients: why the eigenvalues and eigenvectors are important (sec 7.3 and 7.5)

1. A number λ is called an eigenvalue of matrix A if there exists a nonzero vector v such that

$$
A v=\lambda v
$$

and v is called an eigenvector corresponding to the eigenvalue λ.
2. Example (corresponds to uncoupled systems). If A is a diagonal matrix,

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \ldots & 0 \\
0 & \lambda_{2} & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & \lambda_{n}
\end{array}\right)
$$

then the numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues and the vectors

$$
v_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right), \ldots, \quad v_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right)
$$

are the corresponding eigenvectors.
3. Fundamental Proposition. If λ is an eigenvalue of matrix A and v is an eigenvector corresponding to this eigenvalue then

$$
X(t)=e^{\lambda t} v
$$

is a solution of the system $X^{\prime}=A X$, i.e solution of the homogeneous linear system with constant coefficients.

Real Distinct Eigenvalues

4. FACT from Linear algebra: If A has distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and v^{1}, \ldots, v^{n} are the corresponding eigenvectors, then $\operatorname{det}\left(v^{1}, \ldots, v^{n}\right)$ (i.e. the determinant of the matrix with j th column equal to v^{j} does not vanish) or, equivalently the collection of vectors v_{1}, \ldots, v_{n} form a basis of \mathbb{R}^{n}

As a consequence, if If A has distinct real eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
\left\{e^{\lambda_{1} t} v^{1}, \ldots, e^{\lambda_{n} t} v^{n}\right\}
$$

is a fundamental set of solutions and the general solution is

$$
\begin{equation*}
X(t)=C_{1} e^{\lambda_{1} t} v^{1}+\ldots+C_{n} e^{\lambda_{n} t} v^{n} . \tag{3}
\end{equation*}
$$

REMARK If the eigenvalues are distinct but some of them are complex, the formula (3) gives the general complex-valued solutions, so we need to make additional work to get the general real-valued solutions similar to section 3.3 (will be discussed in section 7.6).
5. Eigenvalue are solutions of the following characteristic equation (polynomial):

$$
\operatorname{det}(A-\lambda I)=0
$$

6. Show that the characteristic equation in the case $n=2$ can be found as

$$
\lambda^{2}-\operatorname{trace}(A) \lambda+\operatorname{det}(A)=0
$$

7. EXAMPLE. Consider the following system of DE:

$$
\begin{align*}
& x_{1}^{\prime}=-2 x_{1}+x_{2} \tag{4}\\
& x_{2}^{\prime}=2 x_{1}-3 x_{2}
\end{align*}
$$

(a) Find general solution of (4).
(b) Find solution of (4) subject to the initial condition $X(0)=\binom{1}{4}$
(c) What is behavior of the solution as $t \rightarrow+\infty$?

