Examples of equations that are initially not separable but can be reduced to separable.

1. Type 1 Homogeneous (nonlinear) equation (do not confuse with linear homogeneous equation discussed in the first week and that will be discussed later) are equations of the type

$$
\begin{equation*}
\frac{d y}{d x}=F\left(\frac{y}{x}\right) \tag{1}
\end{equation*}
$$

where F is a given function of a single variable. In other words, the right-hand side of the equation depends on the ratio $\frac{y}{x}$ only.
Make a substitution

$$
u(x)=\frac{y(x)}{x}
$$

Then $y(x)=x u(x)$. Substitute into equation (1):
The left-hand side is $y^{\prime}=x u^{\prime}(x)+u$ The right-hand side is $F(y / x)=F(u)$
Then substituting this into the original equation (1) we get

$$
x u^{\prime}(x)+u=F(u) \quad \Leftrightarrow \quad x u^{\prime}(x)=F(u)-u
$$

which is separable. Indeed,

$$
\frac{d u}{F(u)-u}=\frac{d x}{x}
$$

EXAMPLE 1. Reduce the equation $\frac{d y}{d x}=\frac{3 x+2 y}{2 x-3 y}$ to a separable equation

Solution

Let $u(x)=\frac{y(x)}{x}$. Dividing the numerator and denominator of $\frac{3 x+2 y}{2 x-3 y}$ by x we get

$$
\frac{3 x+2 y}{2 x-3 y}=\frac{3+2 \frac{y}{x}}{2-3 \frac{y}{x}}=\frac{3+2 u}{2-3 u}
$$

Then substituting u into the original equation (1) we get

$$
x u^{\prime}(x)+u=\frac{3+2 u}{2-3 u}
$$

which implies
that

$$
x u^{\prime}(x)=\frac{3+2 u}{2-3 u}-u=\frac{3+2 \mathscr{}-2 \mathscr{}+3 u^{2}}{2-3 u}
$$

so we separate the variables in the equation as follows:

$$
\frac{(2-3 u) d u}{3 u^{2}+3}=\frac{d x}{x}
$$

Then we can integrate it to find the general solution, using the method of integration of rational function studies in Calculus 2.
2. Type 2 Equations of the type

$$
\begin{equation*}
\frac{d y}{d x}=F(a x+b y+c), \tag{2}
\end{equation*}
$$

where F is a given function of a single variable and a, b, c are constants, $b \neq 0$.
Make a substitution

$$
u(x)=a x+b y(x)+c
$$

Then $y(x)=\frac{1}{b}(u(x)-a x-c)$. Substitute into equation (2):
The left-hand side is

$$
y^{\prime}=\frac{1}{b}\left(u^{\prime}(x)-a\right)
$$

. The right-hand side is $F(a x+b y+c)=F(u)$
Then plug it into (2) we ge

$$
\frac{1}{b}\left(u^{\prime}-a\right)=F(u) \quad \Leftrightarrow \quad u^{\prime}=b F(u)+a
$$

which is a separable equation.
EXAMPLE 2. Reduce the equation $\frac{d y}{d x}=\frac{1}{2 y+x}$ to a separable equation

Solution

Let $u(x)=2 y(x)+x$. Then $y(x)=\frac{1}{2}(u(x)-x)$ and $y^{\prime}(x)=\frac{1}{2}\left(u^{\prime}(x)-1\right)$. So substituting to the original equation we get

$$
\frac{1}{2}\left(u^{\prime}(x)-1\right)=\frac{1}{u}
$$

or, equivalently,

$$
u^{\prime}(x)=\frac{2}{u}+1=\frac{2+u}{u}
$$

So,

$$
\frac{u d u}{2+u}=d x
$$

Then we can integrate it to find the general solution.

