Abel's theorem for Wronskian of solutions of linear homogeneous systems and higher order equations

Recall that the trace $\operatorname{tr}(A)$ of a square matrix A is the sum its diagonal elements.
THEOREM 1. (Abel's theorem for first order linear homogeneous systems of differential equations) Assume that n vector functions $\mathbf{X}_{1}(t), \ldots, \mathbf{X}_{n}(t)$ are solutions of a first order linear homogeneous system of n ODEs

$$
\begin{equation*}
\mathbf{X}^{\prime}=P(t) \mathbf{X} \tag{1}
\end{equation*}
$$

and $W(t):=W\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}\right)(t)$ is the Wronskian of the solutions $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}(t)$. Then

$$
\begin{equation*}
W^{\prime}(t)=\operatorname{tr}(P(t)) W(t) \tag{2}
\end{equation*}
$$

Proof for $n=2$ For simplicity prove the theorem in the case $n=2$ only (the proof for arbitrary n is exactly the same, just one works with $n \times n$ matrices instead 2×2). Assume that

$$
\mathbf{X}_{1}(t)=\binom{x_{11}(t)}{x_{21}(t)}, \mathbf{X}_{1}(t)=\binom{x_{12}(t)}{x_{22}(t)}
$$

Then

$$
W(t)=\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|
$$

Note that if an $n \times n$ matrix $A(t)$ depends on a variable t, then, as a consequence of a product rule for derivatives, the derivative of its determinant with respect to t is equal to the sum of n terms such that the i th term is equal to the determinant of the matrix obtained from $A(t)$ by replacing the i th row by the derivative of the i th row of A. Therefore

$$
W^{\prime}(t)=\left|\begin{array}{ll}
x_{11}^{\prime}(t) & x_{12}^{\prime}(t) \tag{3}\\
x_{21}(t) & x_{22}(t)
\end{array}\right|+\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}^{\prime}(t) & x_{22}^{\prime}(t)
\end{array}\right| .
$$

Since $\mathbf{X}_{1}(t)$ and $\mathbf{X}_{2}(t)$ are solutions of (1), the first determinant in (3) can be represented as

$$
\begin{align*}
& \left|\begin{array}{cc}
x_{11}^{\prime}(t) & x_{12}^{\prime}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|=\left|\begin{array}{cc}
p_{11}(t) x_{11}(t)+p_{12}(t) x_{21}(t) & p_{11}(t) x_{12}(t)+p_{12}(t) x_{22}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|= \\
& \left|\begin{array}{cc}
p_{11}(t) x_{11}(t) & p_{11}(t) x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|+\left|\begin{array}{cc}
p_{12}(t) x_{21}(t) & p_{12}(t) x_{22}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|= \\
& p_{11}(t) \underbrace{\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|}_{W(t)}+p_{12}(t) \underbrace{\left|\begin{array}{ll}
x_{21}(t) & x_{22}(t) \\
x_{21}(t) & x_{22}(t)
\end{array}\right|}_{0}=p_{11}(t) W(t) \tag{4}
\end{align*}
$$

(the second determinant in (4) is equal to zero because the rows of the matrix are identical).

In completely similar way the second determinant of (3) can be represented as

$$
\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \tag{5}\\
x_{21}^{\prime}(t) & x_{22}^{\prime}(t)
\end{array}\right|=p_{22}(t) W(t)
$$

Plugging (4) and (5) into (3) we get

$$
W^{\prime}(t)=\left(p_{11}(t)+p_{22}(t)\right) W(t)=\operatorname{tr}(P(t)) W(t)
$$

which proves our theorem in the case $n=2$
COROLLARY 2. (Abel's theorem for second order linear homogeneous equations) If $y_{1}(t)$ and $y_{2}(t)$ are solutions of linear homogeneous ODE of second order

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{6}
\end{equation*}
$$

and $W(t):=W\left(y_{1}, y_{2}\right)(t)$ is the Wronskian of $y_{1}(t)$ and $y_{2}(t)$, then

$$
\begin{equation*}
W^{\prime}(t)+p(t) W(t)=0 \tag{7}
\end{equation*}
$$

Proof. Indeed the matrix $P(t)$ of the system of first order equations corresponding to the second order equation (8) is

$$
P(t)=\left(\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right) .
$$

So,

$$
\operatorname{tr}(P(t))=-p(t) .
$$

Hence by $(2), W^{\prime}(t)=-p(t) W(t)$, which is equivalent to (7).
Here is the direct generalization of Corollary 2 to nth order linear homogeneous equations COROLLARY 3. (Abel's theorem for nth order linear homogeneous $O D E$) If $y_{1}(t), \ldots, y_{n}(t)$ are solutions of a linear homogeneous ODE of order n

$$
\begin{equation*}
y^{(n)}+p_{n-1}(t) y^{(n-1)}+\ldots+p_{1}(t) y(t)+p_{0}(t) y(t)=0 \tag{8}
\end{equation*}
$$

and $W(t):=W\left(y_{1}, \ldots, y_{n}\right)(t)$ is the Wronskian of $y_{1}(t), l d o t s, y_{n}(t)$, then

$$
W^{\prime}(t)+p_{n-1}(t) W(t)=0
$$

Try to deduce it from Theorem 1 by looking for the trace of the matrix of the corresponding system.

