Extra credit problems on volumes of n-dimensional balls, MATH251

The n-dimensional ball of radius R with center at the origin is the set

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2} \leq R^{2}\right\}
$$

It is a straightforward generalization of the disk of radius R in the plane (corresponding to $n=2$) and of the usual ball of radius R in the 3 -dimensional space. Note that for $n=1$ the ball of radius R around the origin is the segment $[-R, R]$ in \mathbb{R}.

The definition of the volume of an n-dimensional solid is a straightforward generalization of the definition of the area of a region in \mathbb{R}^{2} via the double integral of 1 over it and of a volume of 3-dimensional solid via the triple integral of 1 over it (think how to define multi-dimensional integrals by analogy with single, double, and triple integrals).

Let $V_{n}(R)$ be the volume of an n-dimensional ball of radius R. For example, $V_{1}(R)=2 R$ (the length of the segment $[-R, R]$ is equal to $2 R), V_{2}(R)=\pi R^{2}$ (the area of the disk of radius R is equal πR^{2}), $V_{3}(R)=\frac{4}{3} \pi R^{3}$ (the volume of the usual ball of radius R in \mathbb{R}^{3} is equal to $\frac{4}{3} \pi R^{3}$).

Below is a sequence of problems about $V_{n}(R)$. Attempt as many of them as you can.
a) Prove that

$$
V_{n}(R)=\int_{-R}^{R} V_{n-1}\left(\sqrt{R^{2}-x^{2}}\right) d x, \quad n>1
$$

b) Prove that

$$
V_{n}(R)=\iint_{x_{1}^{2}+x_{2}^{2} \leq R^{2}} V_{n-2}\left(\sqrt{R^{2}-x_{1}^{2}-x_{2}^{2}}\right) d x_{1} d x_{2}, \quad n>2
$$

c) Prove that

$$
V_{n}(R)=2 \pi \int_{0}^{R} V_{n-2}\left(\sqrt{R^{2}-r^{2}}\right) r d r, \quad n>2
$$

Hint: use the change to polar coordinates in $\left(x_{1}, x_{2}\right)$-plane.
d) Prove that

$$
V_{n}(R)=\pi \int_{0}^{R^{2}} V_{n-2}(\sqrt{u}) d u, \quad n>2
$$

e) Using item d) and the fact that $V_{1}(R)=2 R$ prove that $V_{3}(R)=\frac{4}{3} \pi R^{3}$.
f) Using items c) or d) and the fact that $V_{2}(R)=\pi R^{2}$ prove that

$$
V_{4}(R)=\frac{\pi^{2}}{2} R^{4}
$$

i.e. the volume of the 4 -dimensional ball of radius R is equal to $\frac{\pi^{2}}{2} R^{4}$.
g) Using item d) and the fact that $V_{3}(R)=\frac{4}{3} \pi R^{3}$ prove that

$$
V_{5}(R)=\frac{8 \pi^{2}}{15} R^{5}
$$

i.e. the volume of the 5 -dimensional ball of radius R is equal to $\frac{8 \pi^{2}}{15} R^{5}$.
h) In general $V_{n}(R)=C_{n} R^{n}$, where C_{n} is the volume of n-dimension ball of radius 1 (justify!). For example $C_{1}=2, C_{2}=\pi, C_{3}=\frac{4}{3} \pi, C_{4}=\frac{\pi^{2}}{2}($ see item f)$), C_{5}=\frac{8 \pi^{2}}{15}($ see item g$\left.)\right)$. Using item d) prove that

$$
C_{n}=\frac{2 \pi}{n} C_{n-2}
$$

i) Using the fact that $C_{1}=2$ and item h) appropriate number of times find C_{7}, C_{9}, and C_{11} (the volume of unit balls of dimension 7,9 , and 11)
j) Using the fact that $C_{2}=\pi$ and item h) appropriate number of times find C_{6}, C_{8}, and C_{10} (the volume of unit balls of dimension 6,8 , and 10)
k) Using item h) and the fact that $C_{1}=2$ and $C_{2}=\pi$ prove by induction that

$$
\begin{aligned}
& C_{2 l}=\frac{\pi^{l}}{l!}, \quad l \geq 1 \\
& C_{2 l+1}=\frac{2^{l+1} \pi^{l}}{(2 l+1)!!}, \quad l \geq 0
\end{aligned}
$$

Here l ! denotes the product of all integers from 1 to l and $(2 l+1)$!! denotes the product of all odd integers from 1 to $2 l+1$.

