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13.1: Vector Functions and Space Curves

A vector function is a function that takes one or more variables and returns a vector. Let r(t) be

a vector function whose range is a set of 3-dimensional vectors:

r(t) = (2(t),y(t), 2(t)) = x()i+y()j + 2(Dk,

where z(t),y(t), z(t) are functions of one variable and they are called the component functions.
A vector function r(t) is continuous if and only if its component functions x(t),y(t), z(t) are
continuous.

Space curve is given by parametric equations:
C={(z,y,2)|x =2(t),y = y(t),z = 2(t), t in I},

where I is an interval and t is a parameter.
FACT: Any continuous vector-function r(t) defines a space curve C' that is traced out by the
tip of the moving vector r(t).

Any parametric curve has a direction of motion given by increasing of parameter.
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EXAMPLE 1. Describe the curve defined by the vector function (indicate direction of motion):

\Vv

(a) r(t) = (cost,sint,0)
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(b) r(t) = (cosat,sinat,c) where a and c are positive constfints.
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(c) r(t) = (2cost,3sint, 1), 0 <t <27
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(d) r(t) = (cost,sint,t)
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(e) r(t) = (1+1t,3+2t,4—5t), -1 <t <1.
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’?('h = (0)1)93
Py = (2,50

EXAMPLE 2. Show that the the curve given by
r(t) = <sint,2cost, \/gsint>

lies on both a plane and a sphere. Then conclude that its graph is a circle and find its radius.
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13.2 Derivatives of Vector Functions

The derivative ¥’ of a vector function r is defined just as for a real-valued function:

dr(to) r(to+ h) —r(to) - 0{[5(1 6‘1 @ men [t

dt h—0 h
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if the limit exists. The derivative r'(ty) is the tangent vector to the curve r(t) at the point r(ty) =
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THEOREM 3. If the functions xz(t),y(t), z(t) are differentiable, then

r'(t) = (@'(t),y' (1), 2'(1)) = /()i + /' ()] + 2/ (Dk.



r'(t) = (@'(t),y/' (1), 2 (1)) = 2" ()i + o/ (1)j + 2/ (t)k.

EXAMPLE 4. Given r(t) = (1 + t)% + ¢'j + sin 3tk.

(a) Find v'(t) = <<@+\.)1 )‘/@4-)'/@“ 'H->I> :\4 2 (

(b) Find a tangent vector to the curve at t = 0

F (o) = & z(wé,“,"‘“@b@

(c) Find a tangent line to the curve at t = 0.
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(¢/) Find a tangent line to the curve at the point (1,1,0).

Find the parcmedor t sach thed
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