

F19 LN 1...

© Igor Zelenko, Fall 2019

14.7: Maximum and minimum values

Function y = f(x)

Function of two variables z = f(x, y)

or relative

1

DEFINITION 1. A function f(x)has a local maximum at x = a if $f(a) \geq f(x)$ when x is near a (i.e. in a neighborhood of a). A function f has a local minimum at x = a if $f(a) \le f(x)$ when x is near a.

If the graph of f has a tangent line at a local extremum, then the tangent line is horizontal: f'(a) = 0.

If the inequalities in this definition hold for ALL points x in the domain of f, then f has an absolute max (or absolute min) at a

DEFINITION 2. A function f(x,y) has a local maximum at (x,y) = (a,b) if $f(a,b) \ge f(x,y)$ when (x,y) is near (a,b)(i.e. in a neighborhood of (a,b)). A function f has a local

minimum at (x,y) = (a,b) if $f(a,b) \leq f(x,y)$ when (x,y) is near(a,b).

If the inequalities in this definition hold for ALL points (x,y)in the domain of f, then f has an absolute maximum (or

absolute minimum) at (a, b).

If the graph of f has a tangent plane at a local extremum, then the tangent PLANE is horizontal.

THEOREM 3. If f has a local extremum (that is, a local maximum or minimum) at (a,b) and the first-order partial derivatives exist there, then

 $f_x(a,b) = f_y(a,b) = 0$ (or, equivalently, $\nabla f(a,b) = 0$.) $\Rightarrow D_y \neq (e,b) = 0$

Explanation: If f has a local max. at (a, l) Men the function

a $P_{x}f(a,b)=0$ $x\mapsto f(x,b)$ has a local max at $x=a=\frac{2f}{2x}(a,b)=0$ Similarly, the function $y\mapsto f(a,y)$ has a local max. at y=bCalci Calc 1 => => = (a,6) =0

> DEFINITION 4. A point (a,b) such that $f_x(a,b) = 0$ and $f_y(a,b) = 0$, or one of this partial derivatives does not exist, is called a **critical point** of f.

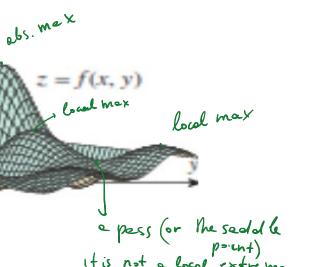
At a critical point a function could have a local may or a local min or neither

derivatives does not exist, is called a **critical point** of f.

At a critical point, a function could have a local max or a local min, or neither. We will be concerned with two important questions:

- Are there any local or absolute extrema?
- If so, where are they located?

©Igor Zelenko, Fall 2019



https://www.slideshare.net/abdulazizuinmlg/multivariate-calculus-mhsw-2

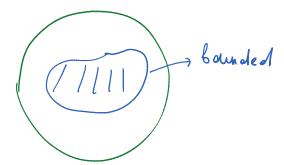
book mex

in \mathbb{R}	in \mathbb{R}^2
closed interval $[a, b]$	closed set - containes boundary
()	
e B	-2. 2
Igor Zelenko at 10/9/2019	
{xel: a = k = b}	$p_{,=} \left\{ (x,y) \in \mathbb{R}^2 : x^2 + y \le 1 \right\}$ open set
open interval (a, b)	open set Sprict In eq. (x, y) \(\) deries
	deries
2	
,	((x,y) ∈ ℝ²: x²+y²≥1) ((x, Ty) ∈ ℝ²: -1 < y < 1
end points of an interval	boundary points
	Notation: D is the boundary of D

2

	7(17) = 4. 2 +4 = 11	1(x, y) + K1 -7 -1
end points of an interval	boundary points	0
	Notation: 3D is the	boundary of D
x=a, x=6		
	30, = {(x,y): x2+y=1)	•
	101-10131. 4 17-13	

DEFINITION 5. A bounded set in \mathbb{R}^2 is one that contained in some disk.



1st quadrant

not bounded

© Igor Zelenko, Fall 2019

> compect

3

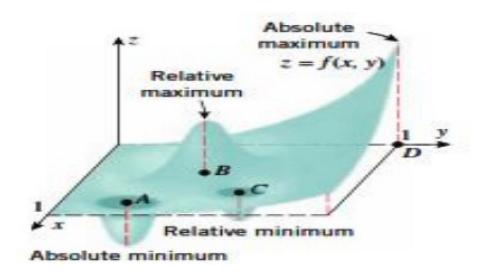
Function y = f(x)

If f is continuous on a closed interval [a, b], then f attains an absolute maximum value $f(x_1)$ and an absolute minimum value $f(x_2)$ at some points x_1 and x_2 in [a, b].

THE EXTREME VALUE THEOREM:

Function of two variables z = f(x, y)

If f is continuous on a closed bounded set \mathcal{D} in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in \mathcal{D} .



https://www.slideshare.net/abdulazizuinmlg/multivariate-calculus-mhsw-2

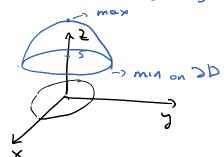
Cirula

EXAMPLE 6. Find extreme values of $f(x,y) = x^2 + y^2$.

	Local	Absolute		(0,0) is the only witial
Maximum	hone	none ofte	1300 fx = 2x=0 =>	(10,0) is the only will be
		_	fy=21=0	point
Minimum	et	et 100	,))	$f(0,0) = 0 \le x^{\frac{1}{2}} + y^{\frac{1}{2}} = f(x,y) dx$
	(قرما)	(99)		$f(0,0) = 0 \le x^2 + y^2 = f(x,y) dr$ every $(x,y) \Rightarrow (0,0)$ is absolute
Domain:) (13) 22 (0) 15 DESSOUR
				No o Name

EXAMPLE 7. Find extreme values of $f(x,y) = 5 + \sqrt{1-x^2-y^2}$. $P = (x,y) : x^2 + y^2 \le 1$

	Local	Absolute
Maximum	at	2+
	(0,0)	(0,0)
Minimum	not	on the boundary
	Inside	Barndey
Domain:	D = ((>	(,1) : x²τη² <



© Igor Zelenko, Fall 2019

EXAMPLE 8. Find extreme values of $f(x,y) = x^2 - y^2$.

		_	
X	\	7	
~ ~ ~ \$	ald Solo	le	I

	Local	Absolute
Maximum	none	None
Minimum	Nove	None

fx=2x=0 (0,0) is the only critical
fy=2y=0 point, but it is neither
local minimum nor local

4

 $x \mapsto f(x, 0) = x^2$ has a local min at x = 0Domain: REMARK 9. Example 8 illustrates so called saddle point of f. Note that the graph of f crosses

its tangent plane at (a, b).

ABSOLUTE MAXIMUM AND MINIMUM VALUES on a closed bounded set.

THE EXTREME VALUE THEOREM:

To find the absolute maximum and minimum values of a continuous function f on a closed interval [a, b]:

- 1. Find the values of f at the critical points of f in (a, b).
- 2. Find the values of f at the endpoints of the interval.

To find the absolute max and min values of a continuous function f on a closed bounded set D:

1. Find the values of f at the critical points of f in D.

$$f_{x} = 0, f_{y} = 0 \quad \text{in } D$$

2. Find the extreme values of f on the boundary of D. (This usually involves either the Calculus I approach or the Lagnrage multiplies nethod of section 14.8 for this work.)

points of the interval.

3. The largest of the values from steps 1&2 is the absolute max value; the smallest of the values from steps 1&2 is the absolute min value.

usually involves either the Calculus I approach or the Lagnrage multiplies nethod of section 14.8 for this work.)

3. The largest of the values from steps 1&2 is the absolute maximum value; the smallest of the values from steps 1&2 is the absolute minimum value.

- The quantity to me maximized/minimized is expressed in terms of variables (as few as possible!)
- Any constraints that are presented in the problem are used to reduce the number of variables to the point they are independent,
- After computing partial derivatives and setting them equal to zero you get purely algebraic problem (but it may be hard.)
- Sort out extreme values to answer the original question.

© Igor Zelenko, Fall 2019

5

EXAMPLE 10. A lamina occupies the region $D = \{(x,y): 0 \le x \le 3, -2 \le y \le 4 - 2x\}$. The temperature at each point of the lamina is given by

$$T(x,y) = 4(x^2 + xy + 2y^2 - 3x + 2y) + 10.$$

Find the hottest and coldest points of the lamina.

1) Sketch the region
2) Find on hid points inside D $\frac{2T}{3x} = 4(2x+y-3) = 0$ $\frac{2T}{3x} = 4(2x+y+2) = 0$ $\frac{2T}{3x} = 4(x+4y+2) = 0$ $\frac{2x+y}{3x} = 3 \text{ Ept Eliminate } x$ $\frac{2x+y-3}{2x+4y-2} \text{ Ept } x = 0$ $\frac{2x+y-3}{2x+4$ 1) Sketch the region

10 12-1 in D Yes (from theta) Analytically : 0 < 2 < 3 -2 < -1 < 4-2.2 V

x-4=-2 => x=2 => (2,-1) is a ch 11 hor point 2x + 8y = -4 (Eq2) 15 (2,-1) in D Yes (from whetch). Analytically: 0 = 2 = 3, -2 = -1 = 4-2.2 L T(2,-1) = 4(4-2+2-6-2)+10 = -16+10=-63) Describe the boundary DD = AB UBC UAC Columbre T at each vertex: T(A) = T(0,4) = 4(32+8) + 10 = 170 T(B) = T(0,-2) = 4(8-4) + 10 = 26 T(C) = T(3,-2) = 4(8-6+8-8-9) + 10 = -10 = 2T(x,y)= 4(x2+xy+2y2-3x+2y)+10 Find contical points inside each edge by peremetrizing them AC = {(/14): y=4-2x, y x=t , y=-2 , 0=t=3 x=0, y=t , 2=t=4 x=t, y=4-2+, 0=t=3 $T(t, -2) = 4 (t^2 - 2t + 8 - T(t, 4 - 2t) = 4 (t^2 + t(4 - 2t) + T(t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 10 = T(t) + 2 (4 - 2t) + 2 (4 - 2t)$ each of 3 cores use Cole 1: Solve of Ti (+) = 0 i=1,2,3 In The corresp. open intervals Callulate the corresp. Va $T_{1}\left(-\frac{1}{2}\right) = 4\left(2 \cdot \frac{1}{4} - 2 \cdot \frac{1}{2}\right) + 10 = 8$ $T_{2}\left(\frac{5}{2}\right) = 4\left(\frac{25}{4} - \frac{25}{2} + 4\right) + 10 = 75\left(\frac{5}{2}\right) = 75\left(\frac{5$ Comparing all 7 values: Track = 170 (at (0,4)) and Trun = -6 (at (2,-1))

© Igor Zelenko, Fall 2019

0

Local/Relative Extrema

Second derivatives test:

Suppose f'' is continuous near a and f'(c) = 0 (i.e. a is a critical point).

- If f''(c) > 0 then f(c) is a local minimum.
- If f''(c) < 0 then f(c) is a local maximum.

Suppose that the second partial derivatives of f are continuous near (a, b) and $\nabla f(a, b) = \mathbf{0}$ (i.e. (a, b) is a critical point). Let $\mathcal{D} = \mathcal{D}(a, b) = f_{xx}(a, b) f_{yy}(a, b) - [f_{xy}(a, b)]^2$

- If $\mathcal{D} > 0$ and $f_{xx}(a,b) > 0$ then f(a,b) is a local minimum.

 or '\(\frac{1}{2}\)(e,b) > \(\frac{1}{2}\)
- If $\mathcal{D} > 0$ and $f_{xx}(a,b) < 0$ then f(a,b) is a local maximum.
- If $\mathcal{D} < 0$ then f(a, b) is not a local extremum (saddle point).

6

maximum.

• If f''(c) < 0 then f(c) is a local $| \bullet |$ If $\mathcal{D} > 0$ and $f_{xx}(a,b) < 0$ then f(a,b) is a local maximum.

• If $\mathcal{D} < 0$ then f(a, b) is not a local extremum (saddle point).

NOTE:

• If f''(c) = 0, then the test gives no information.

If $\mathcal{D} = 0$ or does not exist, then the test gives no information. fails.

To remember formula for \mathcal{D} :

$$\mathcal{D} = f_{xx}f_{yy} - [f_{xy}]^2 = \begin{vmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{vmatrix}$$

$$\Rightarrow \text{Hessian}$$

Sketch of the proof of the Second Derivative test

$$g(t) = f(a+th, b+tk)$$

 $g'(0) = D(h,k) f(e,b) = 0$
 $g''(0) = f_{xx}(e,b) h^2 + 2 f_{xy}(e,b) h^2 + f_{yy}(e,b) k^2 > 0$ for every the second of the second of this quadratic polynom. In second of this quadratic polynomial

EXAMPLE 11. Use the Second Derivative Test to confirm that a local cold point of the lamina in the previous Example is (2, -1).

$$T_{x} = 4(2x+y-3) = 0$$

$$T_{y} = 4(x+4y+2) = 0$$
Use the second order fest
$$T_{xx} = 8$$

$$T_{xy} = 4$$

$$T_{xx} = 8$$

$$T_{xx} = 8, \quad T_{xy} = 4$$

$$D = \begin{vmatrix} T_{xx} & T_{xy} \\ T_{xy} & T_{yy} \end{vmatrix} = \begin{vmatrix} 8 & 24 \\ 4 & 16 \end{vmatrix} = 8 \cdot 16 - 16 = 6 \cdot 16 = 6$$

© Igor Zelenko, Fall 2019

7

EXAMPLE 12. Find the local maximum and minimum values and saddle point(s) of the function $f(x,y) = 4xy - x^4 - y^4$.

1. Find critical points
$$\int_{0}^{1} x = 4y - 4x^{3} = 0 \qquad (=) \qquad \int_{0}^{1} y = x^{3} = 0 \qquad y = (y^{3})^{3} = y^{9}$$

$$\int_{0}^{1} x = 4x - 4y^{3} = 0 \qquad (=) \qquad$$

$$\begin{cases} -1 \times = 4y - 7x = 0 \\ f_y = 4x - 4y^3 = 0 \end{cases} = \begin{cases} y = x = y^3 \\ x = y^3 \end{cases}$$

$$y = y^9 \iff y^9 - y = 0 \iff y (y^8 - 1) = 0 \iff y (y^4 - 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = y (y^2 - 1)(y^4 + 1)(y^4 + 1) = 0 \implies e^{-1} \text{ where } y = 0 \text{ or } y = 1 \text{ or } y = -1 \text{ or } y = -1$$

There are 3 crit. points (0,0), (1,1) & (-1,-1)

2. Find second derive tives

$$f_{xx} = -12x^{2}$$

$$f_{xy} = 4$$

$$f_{yy} = -12y^{2}$$

3. Apply the second derivative test

3. Apply in	a scondi deliva	Live (a.)	(-1,-1)
fxx = -12x2	0,0)	(1,1) -12 < 0	-12 <0
$f_{xy} = 4$	4	4	4
fyy = -12y2	0	-12	-12
D = fxx fxy fxy fyy	0 4 = -16 < 0 saddle point	-12 4 =144-16> 4 -12 >0 local maximum	$\begin{vmatrix} -12 & 4 \\ 4 & -12 \end{vmatrix} = 44 - 16 > 0$ local maximum