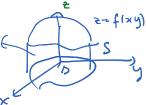


F19_LN_1...

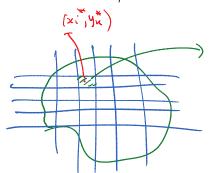
©Igor Zelenko, Fall 2019

15.4: Applications of double integral

- Area: $A(D) = \iint_D dA$
- Volume: $V(\mathbb{R}) = \iint_D f(x, y) dA$, where f is nonnegative on D.



• Total Mass m of the lamina with variable (nonhomogeneous) density $\rho(x,y)$, where the function ρ is continuous on D:



$$m = \iint_D \rho(x, y) \, \mathrm{d}A.$$

$$m_i \approx p(x_i^*, y_k^*) \Delta x_i \Delta y_k$$

Total mass $\approx 25 p(x; y^*) \Delta x; \Delta y_k \Rightarrow \int p(x, y) dxdy$

$$Q = \iint_D \sigma(x, y) \, \mathrm{d}A.$$

© Igor Zelenko, Fall 2019

EXAMPLE 1. Charge is distributed over the part of the disk $x^2 + y^2 \le 1$ in the first quadrant so that the charge density at (x,y) is $\sigma(x,y) = x^2 + y^2$, measured in coulombs per square meter (C/m^2) . Find the total charge.

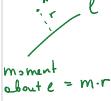
• Moment of the lamina with variable (nonhomogeneous) density $\rho(x,y)$ that occupies the region D about the x-axis:

$$M_x = \iint_D y \rho(x, y) \, \mathrm{d}A$$

Moment of the lamina about the y-axis:

$$M_y = \iint_D x \rho(x, y) \, \mathrm{d}A$$

• Center of mass, (\bar{x}, \bar{y}) , of the lamina with variable (nonhomogeneous) density $\rho(x, y)$ that occupies the region D is defined so that



• Center of mass , (\bar{x}, \bar{y}) , of the lamina with variable (nonhomogeneous) density $\rho(x, y)$ that occupies the region D is defined so that

$$m\bar{x} = M_y, \qquad m\bar{y} = M_x.$$

These yield

$$\bar{x} = \frac{\iint_D x \rho(x, y) \, dA}{m}, \qquad \bar{y} = \frac{\iint_D y \rho(x, y) \, dA}{m},$$

where
$$m = \iint_D \rho(x, y) dA$$
.

REMARK 2. The physical significance is that the lamina behaves as if its entire mass is concentrated at its center of mass. Thus, the lamina balances horizontally when supported as its center of mass.

© Igor Zelenko, Fall 2019

3

EXAMPLE 3. Find the center of mass of the lamina that occupies the region

$$D = \{(x, y) : x^2 + y^2 \le a^2, x \ge 0\}$$

if the density at any point is proportional to the square of its distance from the origin.

$$\int_{a}^{b} (x,y) = \frac{k}{\cos s \tanh} \frac{(x^{2}+y^{2})}{sguar} \text{ of the distance}$$

$$\int_{a}^{b} (x,y) = \frac{k}{\cos s \tanh} \frac{(x^{2}+y^{2})}{sguar} \text{ of the distance}$$

$$\int_{a}^{b} (x,y) \cdot \int_{a}^{b} (x^{2}+y^{2}) dx dy = k \int_{a}^{b} \int_{a}^{c} \int_{a}^{c} r^{2} dr ds - \frac{1}{2} \int_{a}^{c} r^{2} dr ds - \frac{1}$$

instead of coo gove have rino	Symmetry v.r.t. the x - axis