

F19 LN 1...

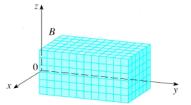
© Igor Zelenko, Fall 2019

15.6: Triple Integrals

Mass problem: Given a solid object, that occupies the region B in \mathbb{R}^3 , with density $\rho(x, y, z)$. Find the mass of the object.

Solution: Let B be a rectangular box:

$$B = \{(x, y, z) | a \le x \le b, c \le y \le d, r \le z \le s\}$$



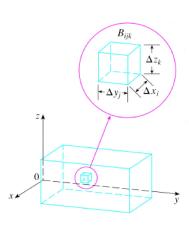
Partition in sub-boxes:

$$m_{ijk} = \rho(x_i^*, y_j^*, z_k^*) \Delta V_{ijk}$$

$$\|P\| = \max \sqrt{\Delta x_i^2 + \Delta y_j^2 + \Delta z_k^2}$$

$$m = \lim_{\|P\| \to 0} \sum_i \sum_j \sum_k \rho(x_i^*, y_j^*, z_k^*) \Delta V_{ijk}$$

$$m = \iiint_B \rho(x, y, z) \, dV$$



FUBINI's THEOREM: If f is continuous on the rectangular box $B = [a, b] \times [c, d] \times [r, s]$ then

$$\iiint_B f(x, y, z) \, dV = \int_r^s \int_c^d \int_a^b f(x, y, z) \, dx \, dy dz$$

and there are 5 other possible orders in which we can integrate.

EXAMPLE 1. Let $B = [0,1] \times [-1,3] \times [0,3]$. Evaluate $I = \iiint_B xye^{yz} dV = \iiint_{-1} xye^{yz} dx = 0$

$$= \int_{-1}^{3} \int_{0}^{3} (y e^{y^{2}} \int_{0}^{3} x dx) dz dy = \frac{1}{2} \int_{-1}^{3} \int_{0}^{3} (y e^{y^{2}} dz) dy = \frac{1}{2} \int_{-1}^{3} \frac{e^{y^{2}}}{3} \Big|_{0}^{3} dy$$

$$= \frac{1}{2} \int_{-1}^{3} (e^{3}y - 1) dy = \frac{1}{2} \left(\frac{e^{3}y}{3} - y\right) \Big|_{y=-1}^{3} = \frac{1}{2} \left(\frac{e^{3}}{3} - \frac{e^{-3}}{3} - y\right)$$

$$= \frac{1}{2} \left(\frac{e^{3}}{3} - \frac{e^{-3}}{3} - y\right)$$

$$= \frac{1}{2} \left(\frac{e^{3}}{3} - \frac{e^{-3}}{3} - y\right)$$

$$= \frac{1}{2} \left(\frac{e^{3}}{3} - \frac{e^{-3}}{3} - y\right)$$

© Igor Zelenko, Fall 2019

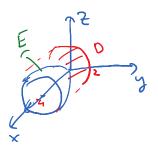
FACT: The volume of the solid E is given by the integral,

$$V = \iiint_E \mathrm{d}V.$$

FACT: The mass of the solid E with variable density $\rho(x,y,z)$ is given by the integral,

 $m = \iiint \rho(x,y,z) dV$

EXAMPLE 2. Find the mass of the solid bounded by $x = y^2 + z^2$ and the plane x = 4 if the density function is $\rho(x, y, z) = \sqrt{y^2 + z^2}$.



$$M = \iiint \sqrt{y^2 + z^2} \text{ of } V = \iiint \sqrt{y^2 + z^2} \text{ of } x \text{ of } y^2 + z^2 \text{ of } x \text{ of } y^2 + z^2 \text{ of } x \text{ of } y^2 + z^2 \text{ of } x \text{ of } y^2 + z^2 \text{ of } x \text{ of$$

$$= \iint_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \iint_{\mathcal{V}} \left(4-r^{2}\right) r dr dz$$

$$= \iint_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \iint_{\mathcal{V}} \left(1-r^{2}\right) r dr dz$$

$$= \iint_{\mathcal{V}} \left(r,\theta\right) - plane;$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \int_{\mathcal{V}} \left(\int_{\mathcal{V}} r \left(4-r^{2}\right) r dr\right) dz$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \int_{\mathcal{V}} \left(\int_{\mathcal{V}} r \left(4-r^{2}\right) r dr\right) dz$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \int_{\mathcal{V}} \left(\int_{\mathcal{V}} r \left(4-r^{2}\right) r dr\right) dz$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \int_{\mathcal{V}} \left(\int_{\mathcal{V}} r \left(4-r^{2}\right) r dr\right) dz$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} \left(4-\left(y^{2}+z^{2}\right)\right) dy dz = \int_{\mathcal{V}} \left(\int_{\mathcal{V}} r \left(4-r^{2}\right) r dr\right) dz$$

$$= \int_{\mathcal{V}} \sqrt{y^{2}+z^{2}} dx$$

$$= \int_{\mathcal{V}} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2$$

$$b^{*} = \{(r, \theta) : 0 \le r \le 2, 0 \le \theta \le 2\pi\}$$

$$= \begin{cases} 2\pi & 2 \\ 4r^{2} - r^{4} \end{cases} dr = 2\pi \left(\frac{4r^{3}}{3} - \frac{r^{5}}{5}\right) \begin{vmatrix} 2 \\ r = 2 \end{cases} = \dots = \frac{128}{15}\pi$$

The indepion of intersection of 2 graphs: $\begin{cases} x = y^2 + 2^2 = y^2 + 2^2 = 4 \end{cases}$

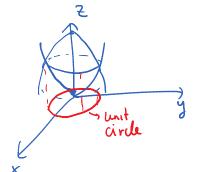
2

$$= \int_{0}^{2\pi} d\theta \int_{0}^{2\pi} \left(4r^{2} - r^{4}\right) dr = 2\pi \left[\frac{4r^{3}}{3} - \frac{r^{5}}{5}\right]_{\Gamma=0}^{2} = \dots = \frac{128}{15}\pi$$

© Igor Zelenko, Fall 2019

3

EXAMPLE 3. Use a triple integral to find the volume of the solid bounded by the surfaces $z = x^2 + y^2$ and $z = 5 - 4x^2 - 4y^2$.



To find this intersection solve $\begin{cases} z = x^2 + y^2 \\ z = 5 - 4x^2 - 4y^2 = 5 - 4x^2 -$

$$V = \int_{S^{-1}x^{2}-4y^{2}} \int_{S^{-1}x^{2}-4y$$

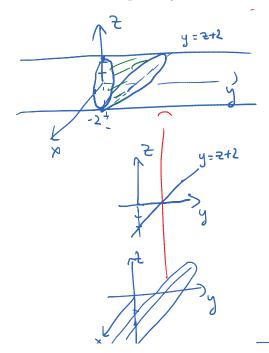
$$= \iint_{X^2 + y^2 \le 1} (5 - 5x^2 - 5y^2) dx dy = 5 \iint_{X^2 + y^2 \le 1} (1 - x^2 - y^2) dx dy = 5 \iint_{P_0 \text{ charge}} (1 - r^2) r dr dx$$

$$= 5 \cdot 2\pi \int_{0}^{1} (r - r^{3}) dr = 10\pi \left(\frac{1}{2} - \frac{1}{4}\right) = \frac{10\pi}{4} = \boxed{\frac{5\pi}{2}}$$

©Igor Zelenko, Fall 2019

4

EXAMPLE 4. Use a triple integral to find the volume of the solid bounded by the elliptic cylinder $4x^2 + z^2 = 4$ and the planes y = 0 and y = z + 2.



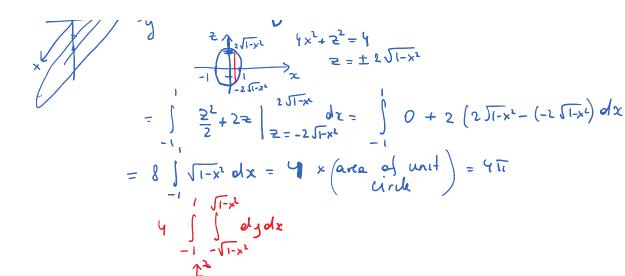
$$V = \iint_{D} \int_{0}^{2+2} dy dx dz =$$

the projection of

the solid to $x \ge -p \ln x$,

which in this case is

the interior of the ellipse (x^2+2^2+1) = $\iint (2+2) dx dz = \iint (2+2) dz dz = \int (2-1) dz dz$



© Igor Zelenko, Fall 2019

 $E=\{(x,y,z)|(x,z)\in D, \phi_1(x,z)\leq y\leq \phi_2(x,z)\}$ where D is the projection of E onto the xz

A solid region of **TYPE III**:

region E

 $y = \phi_2(x, z)$ $y = \phi_1(x, z)$ $y = \phi_1(x, z)$

A type 3 region

 $\iiint_{E} f(x, y, z) \, \mathrm{d}V =$

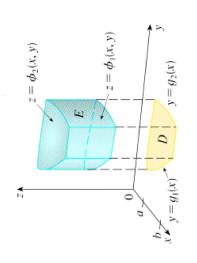
one of its projection on the corresponding

Table 1: Triple integrals over a general bounded region

A solid region of **TYPE I**:

 $E=\{(x,y,z)|(x,y)\in D, \phi_1(x,y)\leq z\leq \phi_2(x,y)\}$ where D is the projection of E onto the xy-plane.

A type 1 solid region



 $\iiint_{E} f(x, y, z) \, dV = \iint \left[\int f(x, y, z) \, dx \right] dA$ $\iiint_{E} f(x,y,z) \, \mathrm{d}V = \iint_{D} \left[\int_{\phi_{1}(x,y)}^{\phi_{2}(x,y)} f(x,y,z) \, \mathrm{d}z \right] \mathrm{d}A$

A solid region of **TYPE II**: $E = \{(x,y,z) | (y,z) \in D, \phi_1(y,z) \leq x \leq \phi_2(y,z) \}$ where D is the projection of E onto the yzplane. $\begin{bmatrix} z \\ x = \phi_1(y,z) \end{bmatrix}$ $x = \phi_2(y,z)$ A type 2 region

A solid F solid F solid F solid F where plane.

When we set up a triple integral it is wise to draw two diagrams: one of the solid region E and one of i coordinate plane.