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On projective and affine Equivalence of Riemannian
metrics

Definition
Two Riemannian metrics g1 and g2 on a manifold M are called
projectively equivalent if they have the same geodesics , up to a
reparametrization.
They are called affinely equivalent, if they have the same geodesics ,
up to an affine reparametrization.

Two Riemannian metrics are affinely equivalent if and only if they have
the same Levi-Civita connection.
Notation: g1

p∼ g2 and g1
a∼ g2, respectively.
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Projective and affine rigidity and an example of a
nonrigid metric

Obviously g1
a∼ Cg1 for a positive constant C (we say that Cg1 is

constantly proportional to g1).

Definition
A metric on a connected manifold M is called projectively (affinely)
rigid , if constantly proportional metrics are the only metrics which are
projectively (affinely) equivalent to it.
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Example of a projectively nonrigid metric

Example
The flat metric is not projectively rigid: If g1 is the flat metric on a plane,
g2 is a standard metric on a hemisphere, and F is the stereographic
projection from the center of the hemisphere to the plane (the
gnomonic map projection) , then (F−1)∗g2 ∼ g1 but they are not
constantly proportional.

A Riemannian metric is (locally) projectively equivalent to the flat one if
and only if it has constant curvature (Beltrami, 1865).
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Transition operator and stabiliity.

All pairs of locally projectively equivalent Riemannian metrics with
certain regularity assumption were described by Levi-Civita (1898),
generalizing the previous result of Dini of 1869 on 2-dimensional case.
These results exhibit certain separation of variables phenomenon.

Given two Riemannian metrics g1 and g2 let Sq : TqM 7→ TqM satisfy

g2q(v1, v2) = g1q(Sqv1, v2), v1, v2 ∈ TqM.

Sq is called the transition operator from the metrics g1 to the metrics g2

at the point q.

Sq is self-adjoint w.r.t. the Euclidean structure given by g1.

A point q0 ∈M is called stable w.r.t. the pair (g1, g2) if Sq has the same
number of distinct eigenvalues in a neighborhood of q0 (or,
equivalently, the tuple of multiplicities of the eigenvalues is constant in
a neighborhood of q0).
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Levi-Civita pairs of metrics

Definition
We say that two Riemannian metrics g1 and g2 constitute a Levi-Civita
pair at a point q0 if there exist positive integers k1, . . . km,∑
ks = dimM , a local coordinate system x̄ = (x̄1, . . . , x̄m), where

x̄s = (x1
s, . . . , x

ks
s ), and ∀s, 1 ≤ s ≤ m a Riemannian metric bs and a

function βs, both depending on variables x̄s only and with βs being
constant if ks > 1 and βs(q0) 6= βl(q0) for all s 6= l, so that

g1( ˙̄x, ˙̄x) =

m∑
s=1

γs(x̄)bs( ˙̄xs, ˙̄xs),

g2( ˙̄x, ˙̄x) =

m∑
s=1

λs(x̄)γs(x̄)bs( ˙̄xs, ˙̄xs).

where λs(x̄) = βs(x̄s)

m∏
l=1

βl(x̄l), γs(x̄) =
∏
l 6=s

∣∣∣ 1

βl(x̄l)
− 1

βs(x̄s)

∣∣∣.
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Levi-Civita and Eisenhart theorems

Theorem (Levi-Civita, 1898)

g1
p∼ g2 in a neighborhood of a stable point q0 ∈M ⇔ if and only g1

and g2 form a Levi-Civita pair at q0.

Theorem ( Eisenhart, 1923 for affine case)

g1
a∼ g2 in a neighborhood of a stable point q0 ∈M ⇔ if and only if g1

and g2 form a Levi-Civita pair at q0 such that all functions βi are
constant.

This theorem is also closely related to the classical De Rham
Decomposition Theorem of a Riemannian manifolds in terms of the
decomposition of the tangent bundle with respect to the holonomy
group.
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Case dim M=2 (Dini, 1869)

There exist local coordinates (x, y)
g1 = (X(x)− Y (y)) (dx2 + dy2)

g2 =

(
1

Y (y)
−

1

X(x)

)(
dx2

X(x)
+

dy2

Y (y)

)
.

Liouville surfaces
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Existence of nontrivial quadratic integrals

Levi-Civita also showed that, in addition to the kinetic energy integral,
the geodesic flow of g1 admits m− 1 integrals which are quadratic with
respect to velocities (all these m integrals are in involution).
In particular, if m > 1 it admits the following integral:

( m∏
s=1

λs
)− 2

m+1 g2( ˙̄x, ˙̄x)

(Painlevè integral). ⇒ Generic Riemannian metrics are projectively
rigid.
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Sub-Riemannian metrics

A rank ` distribution D = {D(q)}q∈M on a manifold M is a rank `
subbundle of the tangent bundle TM (a smooth field of `-dimensional
subspaces D(q) of the tangent spaces TqM ).
D is called bracket-generating distribution if at any point iterated Lie
brackets of vector fields tangent to D generate the whole tangent
space.
Rashevsky-Chow Any two points of M can be connected by a curve
tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner
product gq is chosen on each subspaces D(q) smoothly in q.

Riemannian case: D = TM
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Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

33 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

34 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

35 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

36 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

37 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

38 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

39 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

40 / 85



Sub-Riemannian geodesics

Given a sub-Riemannian metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).
Two types of geodesics:

Abnormal -depend on the distribution D but not on the metric as
unparametrized curves (no such geodesics in Riemannian case).
Normal-projections to M of integral curves of the Hamiltonian
system on T ∗M corresponding to the Hamiltonian
h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 (in the

Riemannian case these are exactly Riemannian geodesics).

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

41 / 85



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 ≤ s ≤ m choose a sub-Riemannian metric bs on the
distribution Ds of Rks and a function βs depending on variables x̄s only
such that βs is constant if ks > 1 and βs(0) 6= βl(0) for s 6= l.
Let

g1( ˙̄x, ˙̄x) =

m∑
s=1

γs(x̄)bs( ˙̄xs, ˙̄xs),

g2( ˙̄x, ˙̄x) =

m∑
s=1

λs(x̄)γs(x̄)bs( ˙̄xs, ˙̄xs)

where the velocities ˙̄x belong to D, λs(x̄) = βs(x̄s)
∏m
l=1 βl(x̄l),

γs(x̄) =
∏
l 6=s

∣∣∣ 1
βl(x̄l)

− 1
βs(x̄s)

∣∣∣.
Then g1

p∼ g2 near the origin.

Also, the normal extremal flow of g1 admits m integrals in involution as
in Riemannian case.
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The case of corank 1 distributions

Conjecture The generalized Levi-Civita pairs are the only pairs of
locally projectively equivalent sR metrics under certain regularity
assumptions.

The answer yet is known to be positive for several cases beyond the
Riemannian one (in the sequel we assume the stability of the transition
operator):

sR metrics on contact distributions (I. Z., 2006). In this case it
means that any sR metric is projectively rigid, because D does not
admit product structure;
sR metrics on quasi-contact distributions (I. Z. 2006). Generic sR
metrics are projectively rigid;
sR metric on corank 1 distributions with Cauchy characteristic
being a sub-distribution (I. Z.and A. Castillo, 2014).
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Conformally and Weyl projectively rigidity

Definition

A sR metric g1 is called conformally projectively rigid if g2
p∼ g1 implies

that g2 is conformal to g1.

Conformally projectively rigidity⇒ affine rigidity;

Definition
A sR metric g is said to be Weyl projectively rigid if any metric, which is
simultaneously conformal to g and projectively equivalent to g is
constantly proportional to g.

Theorem (Weyl 1921; Levi-Civita’s Thm with spectral size 1)
For dim M > 1 any Riemannian metric is Weyl projectively rigid.

Obviously, conformally & Weyl projectively rigidity⇒ projective rigidity.
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Genericity of conformal projectively rigidity via
non-integrability

Normal sub-Riemannian geodesics are projections to M of integral
curves of the Hamiltonian system on T ∗M corresponding to the sR
Hamiltonian h(p, q) = 1

2 ||p|D(q)||2 lying on the level set h = 1
2 . The

integral curves of this Hamiltonian system are called normal extremals.
The sub-Riemannian Hamiltonian is trivially an integral of the flow of
normal extremals.

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If a sub-Riemannian metric is not conformally rigid, then the flow of its
normal extremals admits a nontrivial integral quadratic in impulses (i.e.
on the fibers of T ∗M ), namely the integral of Painlevè type.

Corollary
Generic sub-Riemannian metrics on a given distribution are
conformally projectively rigid and therefore affinely rigid (and actually
projectively rigid in real analytic category).
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Tanaka symbol and nilpotent approximation of a
distribution

D is called equiregular at q0 if all Dj have constant dimension in a
neighborhood of q0.

Definition
The (Tanaka) symbol of an equiregular distribution D at a point q0

is the graded nilpotent Lie algebra
D(q0)⊕D2(q0)/D(q0)⊕D3(q0)/D2(q0)⊕ · · · .
The left-invariant distribution on the corresponding Lie group
obtained by the left translation of D(q0) is called the nilpotent
approximation of D at q0 and is denote by D̂q0 .
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Symbol and Nilpotent approximation of a sR structure

Definition
The symbol of an sR metric g is the pair consisting of the Tanaka
symbol of D at q0 and the Euclidean structure g(q0) on D(q0).
The nilpotent approximation of sub-Riemannian metric g on an
equiregular distribution D at a point q0 is the left-invariant sR
structure ĝ on the Lie group of the Tanaka symbol of D at q0 such
that the Euclidean structure at the identity coincides with the
Euclidean structure at D(q0).
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Direct product structure on the level of nilpotent
approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If g1 and g2 are two sub-Riemannian metric on an equiregular
distribution D, which are locally projectively equivalent around a stable
point q0 and not conformal, then the nilpotent approximation D̂q0of D at
q0 admits a product structure and the corresponding nilpotent
approximations ĝ1 and ĝ2 form a Levi-Civita pair with constant
coefficients.

Corollary

Any sub-Riemannian metric on a rank 2 bracket generating distribution
is affinely rigid and conformally projectively rigid.
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Genericity of indecomposable fundamental graded Lie
algebras

Let GNLA(m,n) be the set of all n-dimensional negatively graded Lie
algebras generated by the homogeneous component of weight −1 and
such that this component has dimension m.

Proposition

Except the following two cases:
1 m = n− 1 with even n,
2 (m,n) = (4, 6),

a generic element of GNLA(m,n) cannot be represented as a direct
sum of two graded Lie algebras.
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Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

Let m and n be two integers such that 2 ≤ m < n, and assume
(m,n) 6= (4, 6) and m 6= n− 1 if n is even. Then, given an
n-dimensional manifold M and a generic rank m distribution D on M ,
any sub-Riemannian metric on (M,D) conformally projectively rigid
and therefore affinely rigid (and in the real analytic category even
projectively rigid from the following sub-Riemannian Weyl results).

Theorem (preprint, arXiv:2001.08584)
Let m and n be two integers such that 2 ≤ m < n. On a generic real
analytic rank m distribution D on a connected n-dimensional real
analytic manifold M any sub-Riemannian metric is Weyl projectively
rigid.
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Decoupling/direct product on the level of Jacobi
equations/Jacobi curves of extremals

Projective/affine equivalence of g1 and g2 ( with Hamiltonians h1 and
h2)⇒ existence of the fiber-preserving preserving orbital
diffeomorphism Φ between Hamiltonian flows on an open dense sets
of the cotangent bundle, i.e.

Φ∗~h1 = a~h2 on an open set of T ∗M.

Theorem (I.Z.)
If a sub-Riemannian metric is not affinely rigid then the Jacobi
equation along generic normal extremal is properly decoupled.

More geometric formulation: the Jacobi curve of a generic normal
extremal is a product of curves in Lagrangian Grassmannians of
smaller dimension)

Φ∗ sends the Jacobi curve at λ of the corresponding extremal of g1 to
the Jacobi curve at Φ(λ) of the corresponding extremal g2. 81 / 85
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