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Sub-Riemannian metrics

A rank ` distribution D = {D(q)}q∈M on a manifold M is a rank `
subbundle of the tangent bundle TM (a smooth field of `-dimensional
subspaces D(q) of the tangent spaces TqM ).
D is called bracket-generating distribution if at any point iterated Lie
brackets of vector fields tangent to D generate the whole tangent
space.
Rashevsky-Chow Any two points of M can be connected by a curve
tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner
product gq is chosen on each subspaces D(q) smoothly in q.

Riemannian case: D = TM
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Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the
distribution one can define the sub-Riemannian length by∫
g
(
γ̇(t), γ̇(t)

) 1
2dt .

Sub-Riemannian geodesics are the candidates for length-minimizers
(via the Pontryagin Maximum Principle in Optimal Control ).

Two types of geodesics: normal and abnormal geodesics (the latter
depend on the distribution D but not on the metric as unparametrized
curves; no such geodesics in Riemannian case).
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Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function hg : T ∗M → R defined by

hg(q, p) =
1

2
max

{
〈p, v〉2 : v ∈ D(q), g(q)(v, v) = 1

}
, q ∈M, p ∈ T ∗qM

(quadratic form on the fiber T ∗qM )

Normal extremals are trajectories λ(·) of the Hamiltonian vector
field on a nonzero level set of hg,

λ(t) = et
~hgλ for some λ ∈ T ∗M

Abnormal extremal: Lipshitzian curves in the zero level set of hg
(= D⊥) such that their tangent lines at almost every point belong
to the kerσ|D⊥ , where σ is the canononical symplectic form on
T ∗M .

Normal/abnormal geodesic are projections of normal/abnormal
extremals (from T ∗M to M ).
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Projective/affine equivalence and existence of orbital
diffeomorphism

Definition
Two sub-Riemannian metrics g1 and g2 on a distribution D are called
projectively/affinely equivalent if they have the same normal
geodesics, up to a reparametrization/an affine parametrization.

Let g and g̃ be two metrics on D.

Orbital diffeomorphism between ~hg and ~hg̃ = local fiber-preserving
diffeomorphism Φ : T ∗M → T ∗M such that Φ

(
et
~hgλ
)

= es
~hg̃
(
Φ(λ)

)
, i.e.

Φ∗~hg = a~hg̃, a ∈ C∞(T ∗M)

Proposition

If g, g̃ projectively equivalent, then ~hg, ~hg̃ orbitally diffeomorphic near
generic point of T ∗M
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The idea of the proof: recovery of an extremal from a
sufficiently high jet of the geodesic

All sR normal geodesics γ starting at a given point q ∈M with
||γ̇(0)|| = 1 are “parametrized” by points of the cylinder
h−1
g (1/2) ∩ T ∗qM :

In different directions of D sR geodesics may be distinguished by jets
of different order. For an even contact distribution there is a special
(characteristic) direction C s. t. all geodesics γ with the same initial
γ̇(0) not in this direction are distinguished by the 2nd jet, but the 2nd
jet of all geodesics with γ̇(0) in the direction of C coincide. 19 / 90
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The idea of the proof (continued)

Lemma
If distribution D is bracket-generating, then for a suficiently large k in a
neighborhood of a generic points in T ∗M the natural map

P kg : λ ∈ h−1
g (1/2) 7−→ jk0

(
π(et

~hgλ)
)

(k-jet of γ at t = 0)

is a diffeomorphism on its image.
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Lessons from the Riemannian case (Levi-Civita, Dini)

For a non rigid Riemannian metric g on M :

Integrability property: The flow of normal sR extremals (of the
vector field ~hg) admits at least one nontrivial (i.e. different from the
a constant multiple of hg) first-integrals which is quadratic on the
fibers, namely the integral of (Painlevè type): if g̃ is the metric
projectively equivalent to g and {λi}mi=1 is the spectrum of the
transition operator between g and g̃, then

( m∏
s=1

λs
)− 2

m+1hg̃

.
Product structure/separation of variables: Locally
M = M1 ×M2 and g = g1 × g2 for the affine equivalence or a sort
of twisted product in the case of projective equivalence.
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Existence of the first integral and generic projective
rigidity

Definition

A sR metric g1 is called conformally projectively rigid if g2
p∼ g1 implies

that g2 is conformal to g1.

Conformally projectively rigidity⇒ affine rigidity;

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If a sub-Riemannian metric is not conformally rigid, then the flow of its
normal extremals admits a nontrivial integral quadratic in impulses (i.e.
on the fibers of T ∗M ), namely the integral of Painlevè type.

Corollary
Generic sub-Riemannian metrics on a given distribution are
conformally projectively rigid and therefore affinely rigid (and actually
projectively rigid in real analytic category by 2020 preprint ,
arXiv:2001.08584). 27 / 90
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Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

31 / 90



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

32 / 90



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

33 / 90



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

34 / 90



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

35 / 90



Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian
metrics by analogy with the metrics appearing in the Levi-Civita
theorem:

Let n = dimM . Fix positive integers k1, k2, . . . km such that
n = k1 + k2 + . . .+ km. Let x̄s = (x1

s, . . . , x
ks
s ) and x̄ = (x̄1, . . . , x̄m) are

standard coordinates in Rn = Rk1 × Rk2 × . . .Rkm , where Rks has
standard coordinates x̄s.

For any 1 ≤ s ≤ m let Ds be a bracket generating distribution in Rks .

Consider the distribution D on Rn which is obtained by the product of
distributions Ds.

Definition
We will say that a distribution admits a product structure, if it is locally
equivalent to such distribution D with m ≥ 2.

36 / 90



Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1-form,
i.e. a everywehere non-zero form annihilating D.

D is called contact if rankD is even and the form dα|D is
nondegenerate;
D is called even (or quasi) -contact if rankD is odd and dα|D is
one -dimensional kernel (i.e. the kernel of minimal possible
dimension)

Then
If D is contact, then it does not admit a product structure, because
otherwise one of the components must be involutive and belong to
the kernel of dα|D;
If D is even-contact, then it admits the product structure: it is
locally the product of a contact distirbution and R;
Free distributions (i.e. the left-invariant ones on free truncated Lie
group) do not admit the product structure.
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locally the product of a contact distirbution and R;
Free distributions (i.e. the left-invariant ones on free truncated Lie
group) do not admit the product structure.
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Generalized sub-Riemannian Levi-Civita pairs.

For every s, 1 ≤ s ≤ m choose a sub-Riemannian metric bs on the
distribution Ds of Rks and a function βs depending on variables x̄s only
such that βs is constant if ks > 1 and βs(0) 6= βl(0) for s 6= l.
Let

g1( ˙̄x, ˙̄x) =

m∑
s=1

γs(x̄)bs( ˙̄xs, ˙̄xs),

g2( ˙̄x, ˙̄x) =

m∑
s=1

λs(x̄)γs(x̄)bs( ˙̄xs, ˙̄xs)

where the velocities ˙̄x belong to D, λs(x̄) = βs(x̄s)
∏m
l=1 βl(x̄l),

γs(x̄) =
∏
l 6=s

∣∣∣ 1
βl(x̄l)

− 1
βs(x̄s)

∣∣∣.
Then g1

p∼ g2 near the origin.

Also, the normal extremal flow of g1 admits m integrals in involution as
in the Riemannian case.
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The main conjecture

Conjecture
The generalized Levi-Civita pairs are the only pairs of locally
projectively equivalent sR metrics and the generalized Levi-Civita pairs
with constant β’s are the only pairs of locally affinely equivalent sR
metrics under certain regularity assumptions (stability of the transition
operator+equiregularity of distribution)

The full positive answer beyond Riemannian metrics was obtained for
corank 1 distributions only (I. Z., 2006, A. Castillo, I. Z., 2014).
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Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics
under consideration are conformal, all objects are real analytic and
(complexified) abnormal extremals of D satisfy some special
properties:

In this case the conjecture says that two conformal metrics are locally
projectively equivalent if and only if they are constantly proportional.
(2020 preprint , arXiv:2001.08584).

In Riemannian geometry it is always true (for n > 1). This result is
attributed to H. Weyl, although it is a particular case of Levi-Civita
Theorem, so we call such results sub-Riemannian Weyl theorems and
the metric satisfying this result Weyl rigid.
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Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted
vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

Separation on the level of the nilpotent approximation of the sR
metrics in projective case;
Separation on the level of Jacobi curves along generic extremals
(decoupling of the Jacobi equation) in the case fo affine
equivalence but for more general than sub-Riemannian
(sub-Finslerian, affine) problems.

53 / 90



Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted
vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

Separation on the level of the nilpotent approximation of the sR
metrics in projective case;
Separation on the level of Jacobi curves along generic extremals
(decoupling of the Jacobi equation) in the case fo affine
equivalence but for more general than sub-Riemannian
(sub-Finslerian, affine) problems.

54 / 90



Weaker separation results

If the Conjecture is true then it establish the separation/product
structure for the distribution (if the metric is not conformally rigid, and
also for the metric (at least in the cae of affine equivalence or a twisted
vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

Separation on the level of the nilpotent approximation of the sR
metrics in projective case;
Separation on the level of Jacobi curves along generic extremals
(decoupling of the Jacobi equation) in the case fo affine
equivalence but for more general than sub-Riemannian
(sub-Finslerian, affine) problems.

55 / 90



Tanaka symbol and nilpotent approximation of a
distribution

D is called equiregular at q0 if all Dj have constant dimension in a
neighborhood of q0.

Definition
The (Tanaka) symbol of an equiregular distribution D at a point q0

is the graded nilpotent Lie algebra

D(q0)︸ ︷︷ ︸
g−1(q0)

⊕D2(q0)/D(q0)︸ ︷︷ ︸
g−2(q0)

⊕D3(q0)/D2(q0)︸ ︷︷ ︸
g−3(q0)

⊕ · · · .

The left-invariant distribution on the corresponding Lie group
obtained by the left translation of D(q0) is called the nilpotent
approximation of D at q0 and is denote by D̂q0 .
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Example: Tanaka symbol of contact distributions

For example, if D is a contact distribution of rank 2n, then its Tanaka
symbol is isomorphic to the 2n+ 1 dimensional Heisenberg algebra:

(X,Y ) 7→ [X,Y ]

defines a simplectic form σ on D, up to a multiplication by a constant ,
corresponding to the choice of the basis vector Z of D2/D).

[X,Y ] = σ(X,Y )Z

Take the Darboux basis E1, . . . , En, Fi, . . . Fn of D with respect to σ,
i.e. such that σ(Ei, Fj) = δij .
Then [Ej , Fj ] = δijZ and it is the standard basis in the Heisenberg
algebra.
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Symbol and Nilpotent approximation of a sR structure

Definition
The symbol of an sR metric g is the pair consisting of the Tanaka
symbol of D at q0 and the Euclidean structure g(q0) on D(q0).
The nilpotent approximation of sub-Riemannian metric g on an
equiregular distribution D at a point q0 is the left-invariant sR
structure ĝ on the Lie group of the Tanaka symbol of D at q0 such
that the Euclidean structure at the identity coincides with the
Euclidean structure at D(q0).
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Direct product structure on the level of nilpotent
approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If g1 and g2 are two sub-Riemannian metric on an equiregular
distribution D, which are locally projectively equivalent around a stable
point q0 and not conformal, then the nilpotent approximation D̂q0of D at
q0 admits a product structure and the corresponding nilpotent
approximations ĝ1 and ĝ2 form a Levi-Civita pair with constant
coefficients.

Corollary

Any sub-Riemannian metric on a rank 2 bracket generating distribution
is affinely rigid and conformally projectively rigid.
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approximations ĝ1 and ĝ2 form a Levi-Civita pair with constant
coefficients.

Corollary

Any sub-Riemannian metric on a rank 2 bracket generating distribution
is affinely rigid and conformally projectively rigid.

65 / 90



Genericity of indecomposable fundamental graded Lie
algebras

Let GNLA(m,n) be the set of all n-dimensional negatively graded Lie
algebras generated by the homogeneous component of weight −1 and
such that this component has dimension m.

Proposition

Except the following two cases:
1 m = n− 1 with even n,
2 (m,n) = (4, 6),

a generic element of GNLA(m,n) cannot be represented as a direct
sum of two graded Lie algebras.
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Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

Let m and n be two integers such that 2 ≤ m < n, and assume
(m,n) 6= (4, 6) and m 6= n− 1 if n is even. Then, given an
n-dimensional manifold M and a generic rank m distribution D on M ,
any sub-Riemannian metric on (M,D) conformally projectively rigid
and therefore affinely rigid (and in the real analytic category even
projectively rigid from the following sub-Riemannian Weyl results).

Theorem (preprint, arXiv:2001.08584)
Let m and n be two integers such that 2 ≤ m < n. On a generic real
analytic rank m distribution D on a connected n-dimensional real
analytic manifold M any sub-Riemannian metric is Weyl projectively
rigid.
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Decomposible in terms of spaces of skew-symmetric
forms

If D is of step 2, i.e. when D2 = TM , then the Tanaka symbol is
described by the the Levi operator L : ∧2D 7→ D2/D(∼= TM/D) or ,
equivalently, by the dual operator L : D∗ 7→ ∧2D∗.

The image of this operator is the (n−m)-dimensional subspace Ω in
the space of skew-symmetric forms on D.

The Tanaka symbol is decomposible if and only Omegag = Ω1
g ⊕ Ω2

g s.t.

in some basis of d = g−1, the elements of Ω1
g are

(
A1 0

0 0

)
and the

elements of Ω2
g are

(
0 0

0 A2

)
, where the corresponding blocks have

the same nonzero size.
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Why the Tanaka symbol in (4,6) case is not generically
indecomposible?

In the case of n−m = 2 (i.e. corank is 2) it is a pencil (i.e. a plane) of
skew-symmetric forms⇒ Kronecker theory of pencils.
For (m,n) = (4, 6) the equation Pfaffian(ω) = 0, ω ∈ Ω is quadratic.

If there are two distinguished (real) lines l1 and l2 in Ω satisfying this
equation (an open condition), D1 and D2 are two planes , which are
kernels of the forms on each line. ⇒

Ωg can be decomposed into sum of two lines of the form
(
A1 0

0 0

)
and

(
0 0

0 A2

)
in the bases compatible with the splitting D = D1⊕D2.

Then D̂ = D̂1 × D̂2, and Di form contact (2, 3) -distributions.
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Jacobi curves of normal extremals

Let Πλ be the vertical subspace of TλT ∗M , i.e. the tangent to the fiber
at λ:

Let h := hg. To any extremal et~hλ assign the curve of Lagrangian
subspaces

t 7−→ Jλ(t) := d(e−t
~h)(Π

et~hλ
)

in the symplectic space TλT ∗M , the Jacobi curve of the extremal et~hλ.
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Jacobi curves: conjugate points, sub-Riemannian
connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).

They contain all information about Jacobi fields and conjugate points
along extremals.) For example, a point t̃ is conjugate to 0 along the
extremal et~hλ iff

Jλ(t̃) ∩ Jλ(0) 6= 0.

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the
action of the symplectic group on TλT ∗M ) produces a function on
T ∗M For example, symplectically invariant constructions with Jacobi
curves of Riemannian extremals gives an alternative construction of
the the Riemannian curvature tensor .

Studying more general curves in LG one can construct analogous
canonical (but non-linear) Ehresmann connection and curvature type
invariants for any sub-Riemannian metric and more general geometric
structure (Agrachev-I.Z.(20002)., Chengbo Li -I.Z. (2009). 81 / 90
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Separation/direct product on the level of Jacobi
equations/Jacobi curves of extremals

Projective/affine equivalence of g1 and g2 ⇒ existence of the
fiber-preserving preserving orbital diffeomorphism Φ between
Hamiltonian flows of the correspondng HAmiltonians ~hg1 and ~hg2 on
the open dense set of T ∗M ⇒

Φ∗ sends the Jacobi curve at λ of the corresponding extremal of g1 to
the Jacobi curve at Φ(λ) of the corresponding extremal g2 (the curves
are considered as unparametrized curves)

Theorem (I.Z.)
If a sub-Riemannian metric is not affinely rigid, then the Jacobi curve
of a generic normal extremal is a direct product of curves in
Lagrangian Grassmannians of smaller dimensions.
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