Projective and affine equivalence of

 sub-Riemannian metrics, part 2: separation on the level of nilpotent approximation and Jacobi curves, generic projective rigidity and Weyl type theorems.Igor Zelenko

Texas A\&M University
based on the joint work with Frederic Jean (ENSTA, Paris) and Sofya Maslovskaya (INRIA, Sophia Antipolis)

Seminario de Singularidades UFC Online, July, 2020

Sub-Riemannian metrics

A rank ℓ distribution $D=\{D(q)\}_{q \in M}$ on a manifold M is a rank ℓ subbundle of the tangent bundle $T M$ (a smooth field of ℓ-dimensional subspaces $D(q)$ of the tangent spaces $\left.T_{q} M\right)$.
brackets of vector fields tangent to D generate the whole tangent space.
Rashevsky-Chow Any two points of M can be connected by a curve tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner product g_{q} is chosen on each subspaces $D(q)$ smoothly in q.

Riemannian case: $D=T M$

$\Theta \odot \theta$

Sub-Riemannian metrics

A rank ℓ distribution $D=\{D(q)\}_{q \in M}$ on a manifold M is a rank ℓ subbundle of the tangent bundle $T M$ (a smooth field of ℓ-dimensional subspaces $D(q)$ of the tangent spaces $\left.T_{q} M\right)$.
D is called bracket-generating distribution if at any point iterated Lie brackets of vector fields tangent to D generate the whole tangent space.
Rashevsky-Chow Any two points of M can be connected by a curve tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner product g_{q} is chosen on each subspaces $D(q)$ smoothly in q.

Riemannian case: $D=T M$

Sub-Riemannian metrics

A rank ℓ distribution $D=\{D(q)\}_{q \in M}$ on a manifold M is a rank ℓ subbundle of the tangent bundle $T M$ (a smooth field of ℓ-dimensional subspaces $D(q)$ of the tangent spaces $\left.T_{q} M\right)$.
D is called bracket-generating distribution if at any point iterated Lie brackets of vector fields tangent to D generate the whole tangent space.
Rashevsky-Chow Any two points of M can be connected by a curve tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner product g_{q} is chosen on each subspaces smoothly in q.

Diemannian case: $D=T M A$

Sub-Riemannian metrics

A rank ℓ distribution $D=\{D(q)\}_{q \in M}$ on a manifold M is a rank ℓ subbundle of the tangent bundle $T M$ (a smooth field of ℓ-dimensional subspaces $D(q)$ of the tangent spaces $\left.T_{q} M\right)$.
D is called bracket-generating distribution if at any point iterated Lie brackets of vector fields tangent to D generate the whole tangent space.
Rashevsky-Chow Any two points of M can be connected by a curve tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner product g_{q} is chosen on each subspaces $D(q)$ smoothly in q.

Riemannian case: $D=T M$

$\Theta \odot \theta$

Sub-Riemannian metrics

A rank ℓ distribution $D=\{D(q)\}_{q \in M}$ on a manifold M is a rank ℓ subbundle of the tangent bundle $T M$ (a smooth field of ℓ-dimensional subspaces $D(q)$ of the tangent spaces $\left.T_{q} M\right)$.
D is called bracket-generating distribution if at any point iterated Lie brackets of vector fields tangent to D generate the whole tangent space.
Rashevsky-Chow Any two points of M can be connected by a curve tangent to a distribution.

A sub-Riemannian metric g is given on the distribution D, if an inner product g_{q} is chosen on each subspaces $D(q)$ smoothly in q.

Riemannian case: $D=T M$

$\Theta \odot \theta$

Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the distribution one can define the sub-Riemannian length by $\int g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t$.
Sub-Riemannian geodesics are the candidates for length-minimizers (via the Pontryagin Maximum Principle in Optimal Control).

Two types of geodesics: normal and abnormal geodesics (the latter depend on the distribution D but not on the metric as unparametrized curves; no such geodesics in Riemannian case).

Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the distribution one can define the sub-Riemannian length by $\int g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t$.
Sub-Riemannian geodesics are the candidates for length-minimizers (via the Pontryagin Maximum Principle in Optimal Control).

Two types of geodesics: normal and abnormal geodesics (the latter
depend on the distribution D but not on the metric as unparametrized
curves; no such geodesics in Riemannian case).

Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the distribution one can define the sub-Riemannian length by $\int g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t$.
Sub-Riemannian geodesics are the candidates for length-minimizers (via the Pontryagin Maximum Principle in Optimal Control).

Two types of geodesics: normal and abnormal geodesics (the latter
depend on the distribution D but not on the metric as unparametrized
curves; no such geodesics in Riemannian case).

Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the distribution one can define the sub-Riemannian length by $\int g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t$.
Sub-Riemannian geodesics are the candidates for length-minimizers (via the Pontryagin Maximum Principle in Optimal Control).

Two types of geodesics: normal and abnormal geodesics (the latter depend on the distribution D but not on the metric as unparametrized curves; no such geodesics in Riemannian case)

Sub-Riemannian geodesics

Given a sub-Riemannian (sR) metric g, for any curve γ tangent to the distribution one can define the sub-Riemannian length by $\int g(\dot{\gamma}(t), \dot{\gamma}(t))^{\frac{1}{2}} d t$.
Sub-Riemannian geodesics are the candidates for length-minimizers (via the Pontryagin Maximum Principle in Optimal Control).

Two types of geodesics: normal and abnormal geodesics (the latter depend on the distribution D but not on the metric as unparametrized curves; no such geodesics in Riemannian case).

Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function $h_{g}: T^{*} M \rightarrow \mathbb{R}$ defined by
$h_{g}(q, p)=\frac{1}{2} \max \left\{\langle p, v\rangle^{2}: v \in D(q), g(q)(v, v)=1\right\}, \quad q \in M, p \in T_{q}^{*} M$
(quadratic form on the fiber $T_{q}^{*} M$)

- Normal extremals are trajectories $\lambda(\cdot)$ of the Hamiltonian vector
field on a nonzero level set of h_{g},
for some $\lambda \in T^{*} M$
- Abnormal extremal: Lipshitzian curves in the zero level set of h_{g} $\left(=D^{\perp}\right)$ such that their tangent lines at almost every point belong to the $\left.\operatorname{ker} \sigma\right|_{D^{\perp}}$, where σ is the canononical symplectic form on

Normal/abnormal geodesic are projections of normal/abnormal extremals (from $T^{*} M$ to M).

Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function $h_{g}: T^{*} M \rightarrow \mathbb{R}$ defined by
$h_{g}(q, p)=\frac{1}{2} \max \left\{\langle p, v\rangle^{2}: v \in D(q), g(q)(v, v)=1\right\}, \quad q \in M, p \in T_{q}^{*} M$
(quadratic form on the fiber $T_{q}^{*} M$)

- Normal extremals are trajectories $\lambda(\cdot)$ of the Hamiltonian vector field on a nonzero level set of h_{g},

$$
\lambda(t)=e^{t \vec{h}_{g}} \lambda \quad \text { for some } \lambda \in T^{*} M
$$

- Abnormal extremal: Lipshitzian curves in the zero level set of h_{g}
$\left(=D^{\perp}\right)$ such that their tangent lines at almost every point belongto the $\left.\operatorname{ker} \sigma\right|_{D^{\perp}}$, where σ is the canononical symplectic form on

Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function $h_{g}: T^{*} M \rightarrow \mathbb{R}$ defined by
$h_{g}(q, p)=\frac{1}{2} \max \left\{\langle p, v\rangle^{2}: v \in D(q), g(q)(v, v)=1\right\}, \quad q \in M, p \in T_{q}^{*} M$
(quadratic form on the fiber $T_{q}^{*} M$)

- Normal extremals are trajectories $\lambda(\cdot)$ of the Hamiltonian vector field on a nonzero level set of h_{g},

$$
\lambda(t)=e^{t \vec{h}_{g}} \lambda \quad \text { for some } \lambda \in T^{*} M
$$

- Abnormal extremal: Lipshitzian curves in the zero level set of h_{g} ($=D^{\perp}$) such that their tangent lines at almost every point belong to the $\left.\operatorname{ker} \sigma\right|_{D^{\perp}}$, where σ is the canononical symplectic form on $T^{*} M$.
Normal/abnormal geodesic are projections of normal/abnormal extremals (from $T^{*} M$ to M).

Sub-Riemannian geodesics: in more details

sR Hamiltonian is the function $h_{g}: T^{*} M \rightarrow \mathbb{R}$ defined by
$h_{g}(q, p)=\frac{1}{2} \max \left\{\langle p, v\rangle^{2}: v \in D(q), g(q)(v, v)=1\right\}, \quad q \in M, p \in T_{q}^{*} M$
(quadratic form on the fiber $T_{q}^{*} M$)

- Normal extremals are trajectories $\lambda(\cdot)$ of the Hamiltonian vector field on a nonzero level set of h_{g},

$$
\lambda(t)=e^{t \vec{h}_{g}} \lambda \quad \text { for some } \lambda \in T^{*} M
$$

- Abnormal extremal: Lipshitzian curves in the zero level set of h_{g} ($=D^{\perp}$) such that their tangent lines at almost every point belong to the $\left.\operatorname{ker} \sigma\right|_{D^{\perp}}$, where σ is the canononical symplectic form on $T^{*} M$.
Normal/abnormal geodesic are projections of normal/abnormal extremals (from $T^{*} M$ to M).

Projective/affine equivalence and existence of orbital diffeomorphism

Definition

Two sub-Riemannian metrics g_{1} and g_{2} on a distribution D are called projectively/affinely equivalent if they have the same normal geodesics, up to a reparametrization/an affine parametrization.

Projective/affine equivalence and existence of orbital diffeomorphism

Definition

Two sub-Riemannian metrics g_{1} and g_{2} on a distribution D are called projectively/affinely equivalent if they have the same normal geodesics, up to a reparametrization/an affine parametrization.

Let g and \tilde{g} be two metrics on D.
Orbital diffeomorphism between \vec{h}_{g} and $\vec{h}_{\tilde{g}}$ = local fiber-preserving diffeomorphism $\Phi: T^{*} M \rightarrow T^{*} M$ such that $\Phi\left(e^{t \vec{h}_{g}} \lambda\right)=e^{s \vec{h}_{\tilde{g}}}(\Phi(\lambda))$, i.e.

$$
\Phi_{*} \vec{h}_{g}=a \vec{h}_{\tilde{g}}, \quad a \in C^{\infty}\left(T^{*} M\right)
$$

Proposition

Projective/affine equivalence and existence of orbital diffeomorphism

Definition

Two sub-Riemannian metrics g_{1} and g_{2} on a distribution D are called projectively/affinely equivalent if they have the same normal geodesics, up to a reparametrization/an affine parametrization.

Let g and \tilde{g} be two metrics on D.
Orbital diffeomorphism between \vec{h}_{g} and $\vec{h}_{\tilde{g}}$ = local fiber-preserving diffeomorphism $\Phi: T^{*} M \rightarrow T^{*} M$ such that $\Phi\left(e^{t \vec{h}_{g}} \lambda\right)=e^{s \vec{h}_{\tilde{g}}}(\Phi(\lambda))$, i.e.

$$
\Phi_{*} \vec{h}_{g}=a \vec{h}_{\tilde{g}}, \quad a \in C^{\infty}\left(T^{*} M\right)
$$

Proposition

If g, \tilde{g} projectively equivalent, then $\vec{h}_{g}, \vec{h}_{\tilde{g}}$ orbitally diffeomorphic near generic point of $T^{*} M$

The idea of the proof: recovery of an extremal from a sufficiently high jet of the geodesic

All sR normal geodesics γ starting at a given point $q \in M$ with $\|\dot{\gamma}(0)\|=1$ are "parametrized" by points of the cylinder $h_{g}^{-1}(1 / 2) \cap T_{q}^{*} M:$

(dim M-rank D) -parametric family of $s R$ geodesics with the same initial velocity

In different directions of D sR geodesics may be distinguished by jets of different order. For an even contact distribution there is a special (characteristic) direction C s. t. all geodesics γ with the same initial $\dot{\gamma}(0)$ not in this direction are distinguished by the 2nd jet, but the 2nd

The idea of the proof: recovery of an extremal from a sufficiently high jet of the geodesic

All sR normal geodesics γ starting at a given point $q \in M$ with $\|\dot{\gamma}(0)\|=1$ are "parametrized" by points of the cylinder $h_{g}^{-1}(1 / 2) \cap T_{q}^{*} M:$

(dim M-rank D) -parametric family of $s R$ geodesics with the same initial velocity

In different directions of $D \mathrm{sR}$ geodesics may be distinguished by jets of different order.

The idea of the proof: recovery of an extremal from a sufficiently high jet of the geodesic

All sR normal geodesics γ starting at a given point $q \in M$ with $\|\dot{\gamma}(0)\|=1$ are "parametrized" by points of the cylinder $h_{g}^{-1}(1 / 2) \cap T_{q}^{*} M:$

(dim M-rank D) -parametric family of $s R$ geodesics with the same initial velocity

In different directions of $D \mathrm{sR}$ geodesics may be distinguished by jets of different order. For an even contact distribution there is a special (characteristic) direction C s.t. all geodesics γ with the same initial $\dot{\gamma}(0)$ not in this direction are distinguished by the 2nd jet,

The idea of the proof: recovery of an extremal from a sufficiently high jet of the geodesic

All sR normal geodesics γ starting at a given point $q \in M$ with $\|\dot{\gamma}(0)\|=1$ are "parametrized" by points of the cylinder $h_{g}^{-1}(1 / 2) \cap T_{q}^{*} M:$

In different directions of $D \mathrm{sR}$ geodesics may be distinguished by jets of different order. For an even contact distribution there is a special (characteristic) direction C s.t. all geodesics γ with the same initial $\dot{\gamma}(0)$ not in this direction are distinguished by the 2nd jet, but the 2nd jet of all geodesics with $\dot{\gamma}(0)$ in the direction of C coincide.

The idea of the proof (continued)

Lemma

If distribution D is bracket-generating, then for a suficiently large k in a neighborhood of a generic points in $T^{*} M$ the natural map

$$
P_{g}^{k}: \lambda \in h_{g}^{-1}(1 / 2) \longmapsto j_{0}^{k}\left(\pi\left(e^{t \vec{h}_{g}} \lambda\right)\right) \quad(k \text {-jet of } \gamma \text { at } t=0)
$$

is a diffeomorphism on its image.

The idea of the proof (continued)

Lemma

If distribution D is bracket-generating, then for a suficiently large k in a neighborhood of a generic points in $T^{*} M$ the natural map

$$
P_{g}^{k}: \lambda \in h_{g}^{-1}(1 / 2) \longmapsto j_{0}^{k}\left(\pi\left(e^{t \vec{h}_{g}} \lambda\right)\right) \quad(k \text {-jet of } \gamma \text { at } t=0)
$$

is a diffeomorphism on its image.

Lessons from the Riemannian case (Levi-Civita, Dini)

For a non rigid Riemannian metric g on M :

- Integrability property: The flow of normal sR extremals (of the vector field h_{g}) admits at least one nontrivial (i.e. different from the a constant multiple of h_{g}) first-integrals which is quadratic on the fibers, namely the integral of (Painlevè type): if \tilde{g} is the metric projectively equivalent to g and $\left\{\lambda_{i}\right\}_{i=1}^{m}$ is the spectrum of the transition operator between g and \widetilde{g}, then

$$
\left(\prod_{s=1}^{m} \lambda_{s}\right)^{-\frac{2}{m+1}} h_{\tilde{g}}
$$

- Product structure/separation of variables: Locally
of twisted product in the case of projective equivalence.

Lessons from the Riemannian case (Levi-Civita, Dini)

For a non rigid Riemannian metric g on M :

- Integrability property: The flow of normal sR extremals (of the vector field h_{g}) admits at least one nontrivial (i.e. different from the a constant multiple of h_{g}) first-integrals which is quadratic on the fibers, namely the integral of (Painlevè type): if \tilde{g} is the metric projectively equivalent to g and $\left\{\lambda_{i}\right\}_{i=1}^{m}$ is the spectrum of the transition operator between g and \widetilde{g}, then

$$
\left(\prod_{s=1}^{m} \lambda_{s}\right)^{-\frac{2}{m+1}} h_{\tilde{g}}
$$

- Product structure/separation of variables: Locally $M=M_{1} \times M_{2}$ and $g=g_{1} \times g_{2}$ for the affine equivalence or a sort of twisted product in the case of projective equivalence.

Existence of the first integral and generic projective rigidity

Definition

A sR metric g_{1} is called conformally projectively rigid if $g_{2} \stackrel{p}{\sim} g_{1}$ implies that g_{2} is conformal to g_{1}.

Conformally projectively rigidity \Rightarrow affine rigidity;
Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If a sub-Riemannian metric is not conformally rigid then the flow of its normal extremals admits a nontrivial integral quadratic in impulses (i.e. on the fibers of $T^{*} M$), namely the integral of Painlevè type.

Corollary
Generic sub-Riemannian metrics on a given distribution are conformally projectively rigid and therefore affinely rigid (and actually projectively rigid in real analytic category by 2020 preprint

Existence of the first integral and generic projective rigidity

Definition

A sR metric g_{1} is called conformally projectively rigid if $g_{2} \stackrel{p}{\sim} g_{1}$ implies that g_{2} is conformal to g_{1}.

Conformally projectively rigidity \Rightarrow affine rigidity;

Existence of the first integral and generic projective rigidity

Definition

A sR metric g_{1} is called conformally projectively rigid if $g_{2} \stackrel{p}{\sim} g_{1}$ implies that g_{2} is conformal to g_{1}.

Conformally projectively rigidity \Rightarrow affine rigidity;
Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If a sub-Riemannian metric is not conformally rigid, then the flow of its normal extremals admits a nontrivial integral quadratic in impulses (i.e. on the fibers of $T^{*} M$), namely the integral of Painlevè type.

> Corollary
> Generic sub-Riemannian metrics on a given distribution are conformally projectively rigid and therefore affinely rigid (and actually projectively rigid in real analytic category by 2020 preprint

Existence of the first integral and generic projective rigidity

Definition

A sR metric g_{1} is called conformally projectively rigid if $g_{2} \stackrel{p}{\sim} g_{1}$ implies that g_{2} is conformal to g_{1}.

Conformally projectively rigidity \Rightarrow affine rigidity;
Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If a sub-Riemannian metric is not conformally rigid, then the flow of its normal extremals admits a nontrivial integral quadratic in impulses (i.e. on the fibers of $T^{*} M$), namely the integral of Painlevè type.

Corollary

Generic sub-Riemannian metrics on a given distribution are conformally projectively rigid and therefore affinely rigid (and actually projectively rigid in real analytic category by 2020 preprint , arXiv:2001.08584).

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Let $n=\operatorname{dim} M$. Fix positive integers $k_{1}, k_{2} \ldots k_{m}$ such that standard coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}} \times \ldots \mathbb{R}^{k_{m}}$, where $\mathbb{R}^{k_{s}}$ has standard coordinates

For any $1 \leq s \leq m$ let D, be a bracket generating distribution in \mathbb{R} Consider the distribution D on \mathbb{R}^{n} which is obtained by the product of distributions D_{s}

Definition
We will say that a distribution admits a product structure, if it is locally equivalent to such distribution D with $m \geq 2$.

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Let $n=\operatorname{dim} M$. Fix positive integers $k_{1}, k_{2}, \ldots k_{m}$ such that $n=k_{1}+k_{2}+\ldots+k_{m}$. Let $\bar{x}_{s}=\left(x_{s}^{1}, \ldots, x_{s}^{k_{s}}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)$ are standard coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}} \times \ldots \mathbb{R}^{k_{m}}$, where $\mathbb{R}^{k_{s}}$ has standard coordinates \bar{x}_{s}.

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Let $n=\operatorname{dim} M$. Fix positive integers $k_{1}, k_{2}, \ldots k_{m}$ such that $n=k_{1}+k_{2}+\ldots+k_{m}$. Let $\bar{x}_{s}=\left(x_{s}^{1}, \ldots, x_{s}^{k_{s}}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)$ are standard coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}} \times \ldots \mathbb{R}^{k_{m}}$, where $\mathbb{R}^{k_{s}}$ has standard coordinates \bar{x}_{s}.
For any $1 \leq s \leq m$ let D_{s} be a bracket generating distribution in $\mathbb{R}^{k_{s}}$.
Consider the distribution D on \mathbb{R}^{n} which is obtained by the product of distribution

We will say that a distribution admits a product structure, if it is locally equivalent to such distribution D with m.

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Let $n=\operatorname{dim} M$. Fix positive integers $k_{1}, k_{2}, \ldots k_{m}$ such that
$n=k_{1}+k_{2}+\ldots+k_{m}$. Let $\bar{x}_{s}=\left(x_{s}^{1}, \ldots, x_{s}^{k_{s}}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)$ are
standard coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}} \times \ldots \mathbb{R}^{k_{m}}$, where $\mathbb{R}^{k_{s}}$ has standard coordinates \bar{x}_{s}.

For any $1 \leq s \leq m$ let D_{s} be a bracket generating distribution in $\mathbb{R}^{k_{s}}$.
Consider the distribution D on \mathbb{R}^{n} which is obtained by the product of distributions D_{s}.

Definition
We will sav that a distribution admits a product structure, if it is locally equivalent to such distribution

Distributions admitting product structure

Construction of pairs of projectively equivalent sub-Riemannian metrics by analogy with the metrics appearing in the Levi-Civita theorem:

Let $n=\operatorname{dim} M$. Fix positive integers $k_{1}, k_{2}, \ldots k_{m}$ such that
$n=k_{1}+k_{2}+\ldots+k_{m}$. Let $\bar{x}_{s}=\left(x_{s}^{1}, \ldots, x_{s}^{k_{s}}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right)$ are
standard coordinates in $\mathbb{R}^{n}=\mathbb{R}^{k_{1}} \times \mathbb{R}^{k_{2}} \times \ldots \mathbb{R}^{k_{m}}$, where $\mathbb{R}^{k_{s}}$ has standard coordinates \bar{x}_{s}.
For any $1 \leq s \leq m$ let D_{s} be a bracket generating distribution in $\mathbb{R}^{k_{s}}$.
Consider the distribution D on \mathbb{R}^{n} which is obtained by the product of distributions D_{s}.

Definition

We will say that a distribution admits a product structure, if it is locally equivalent to such distribution D with $m \geq 2$.

Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1-form, i.e. a everywehere non-zero form annihilating D.
nondegenerate;

- D is called even (or quasi) -contact if rank D is odd and dal D is one -dimensional kernel (i.e. the kernel of minimal possible dimension)
- If D is contact, then it does not admit a product structure, because otherwise one of the components must be involutive and belong to the kernel of $\left.d \alpha\right|_{D}$;
- If D is even-contact, then it admits the product structure: it is locally the product of a contact distirbution and \mathbb{R};
- Free distributions (i.e. the left-invariant ones on free truncated Lie group) do not admit the product structure.

Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1 -form, i.e. a everywehere non-zero form annihilating D.

- D is called contact if $\operatorname{rank} D$ is even and the form $\left.d \alpha\right|_{D}$ is nondegenerate;
one -dimensional kernel (i.e. the kernel of minimal possible dimension)

Then

- If D is contact, then it does not admit a product structure, because otherwise one of the components must be involutive and belong to the kernel of $\left.d \alpha\right|_{D}$;
- If D is even-contact, then it admits the product structure: it is locally the product of a contact distirbution and \mathbb{R};
- Free distributions (i.e. the left-invariant ones on free truncated Lie group) do not admit the product structure.

Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1-form, i.e. a everywehere non-zero form annihilating D.

- D is called contact if $\operatorname{rank} D$ is even and the form $\left.d \alpha\right|_{D}$ is nondegenerate;
- D is called even (or quasi) -contact if $\operatorname{rank} D$ is odd and $\left.d \alpha\right|_{D}$ is one -dimensional kernel (i.e. the kernel of minimal possible dimension)
Then
- If D is contact, then it does not admit a product structure, because otherwise one of the components must be involutive and belong to the kernel of $\left.d \alpha\right|_{D}$;
- If D is even-contact, then it admits the product structure: it is locally the product of a contact distirbution and \mathbb{R};
- Free distributions (i.e. the left-invariant ones on free truncated Lie group) do not admit the product structure

Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1-form, i.e. a everywehere non-zero form annihilating D.

- D is called contact if $\operatorname{rank} D$ is even and the form $\left.d \alpha\right|_{D}$ is nondegenerate;
- D is called even (or quasi) -contact if $\operatorname{rank} D$ is odd and $\left.d \alpha\right|_{D}$ is one -dimensional kernel (i.e. the kernel of minimal possible dimension)
Then
- If D is contact, then it does not admit a product structure, because otherwise one of the components must be involutive and belong to the kernel of $\left.d \alpha\right|_{D}$;
- If D is even-contact, then it admits the product structure: it is locally the product of a contact distirbution and \mathbb{R};
> - Free distributions (i.e. the left-invariant ones on free truncated Lie group) do not admit the product structure.

Examples: contact, even-contact, free distributions

Assume that D is a corank 1 distribution and α is its defining 1-form, i.e. a everywehere non-zero form annihilating D.

- D is called contact if $\operatorname{rank} D$ is even and the form $\left.d \alpha\right|_{D}$ is nondegenerate;
- D is called even (or quasi) -contact if $\operatorname{rank} D$ is odd and $\left.d \alpha\right|_{D}$ is one -dimensional kernel (i.e. the kernel of minimal possible dimension)
Then
- If D is contact, then it does not admit a product structure, because otherwise one of the components must be involutive and belong to the kernel of $\left.d \alpha\right|_{D}$;
- If D is even-contact, then it admits the product structure: it is locally the product of a contact distirbution and \mathbb{R};
- Free distributions (i.e. the left-invariant ones on free truncated Lie group) do not admit the product structure.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$. Let

where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,

Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$. Let

where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,

Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$.
where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,

Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$.
Let

$$
\begin{gathered}
g_{1}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right) \\
g_{2}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \lambda_{s}(\bar{x}) \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right)
\end{gathered}
$$

where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,
$\gamma_{s}(\bar{x})=\prod_{l \neq s}\left|\frac{1}{\beta_{l}\left(\bar{x}_{l}\right)}-\frac{1}{\beta_{s}\left(\bar{x}_{s}\right)}\right|$.
Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$.
Let

$$
\begin{gathered}
g_{1}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right) \\
g_{2}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \lambda_{s}(\bar{x}) \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right)
\end{gathered}
$$

where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,
$\gamma_{s}(\bar{x})=\prod_{l \neq s}\left|\frac{1}{\beta_{l}\left(\bar{x}_{l}\right)}-\frac{1}{\beta_{s}\left(\bar{x}_{s}\right)}\right|$.
Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

Generalized sub-Riemannian Levi-Civita pairs.

For every $s, 1 \leq s \leq m$ choose a sub-Riemannian metric b_{s} on the distribution D_{s} of $\mathbb{R}^{k_{s}}$ and a function β_{s} depending on variables \bar{x}_{s} only such that β_{s} is constant if $k_{s}>1$ and $\beta_{s}(0) \neq \beta_{l}(0)$ for $s \neq l$.
Let

$$
\begin{gathered}
g_{1}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right) \\
g_{2}(\dot{\bar{x}}, \dot{\bar{x}})=\sum_{s=1}^{m} \lambda_{s}(\bar{x}) \gamma_{s}(\bar{x}) b_{s}\left(\dot{\bar{x}}_{s}, \dot{\bar{x}}_{s}\right)
\end{gathered}
$$

where the velocities $\dot{\bar{x}}$ belong to $D, \lambda_{s}(\bar{x})=\beta_{s}\left(\bar{x}_{s}\right) \prod_{l=1}^{m} \beta_{l}\left(\bar{x}_{l}\right)$,
$\gamma_{s}(\bar{x})=\prod_{l \neq s}\left|\frac{1}{\beta_{l}\left(\bar{x}_{l}\right)}-\frac{1}{\beta_{s}\left(\bar{x}_{s}\right)}\right|$.
Then $g_{1} \stackrel{p}{\sim} g_{2}$ near the origin.
Also, the normal extremal flow of g_{1} admits m integrals in involution as in the Riemannian case.

The main conjecture

Conjecture

The generalized Levi-Civita pairs are the only pairs of locally projectively equivalent sR metrics and the generalized Levi-Civita pairs with constant β 's are the only pairs of locally affinely equivalent $s R$ metrics under certain regularity assumptions (stability of the transition operator+equiregularity of distribution)

The full positive answer beyond Riemannian metrics was obtained for corank 1 distributions only (I. Z., 2006, A. Castillo, I. Z., 2014).

The main conjecture

Conjecture

The generalized Levi-Civita pairs are the only pairs of locally projectively equivalent sR metrics and the generalized Levi-Civita pairs with constant β 's are the only pairs of locally affinely equivalent $s R$ metrics under certain regularity assumptions (stability of the transition operator+equiregularity of distribution)

The full positive answer beyond Riemannian metrics was obtained for corank 1 distributions only (I. Z., 2006, A. Castillo, I. Z., 2014).

Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics under consideration are conformal, all objects are real analytic and (complexified) abnormal extremals of D satisfy some special properties:

In this case the conjecture says that two conformal metrics are locally projectively equivalent if and only if they are constantly proportional. (2020 preprint , arXiv:2001.08584).

In Riemannian geometry it is always true (for $n>1$). This result is attributed to H . Weyl, although it is a particular case of Levi-Civita Theorem, so we call such results sub-Riemannian Weyl theorems and the metric satisfying this result Weyl rigid.

Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics under consideration are conformal, all objects are real analytic and (complexified) abnormal extremals of D satisfy some special properties:
In this case the conjecture says that two conformal metrics are locally projectively equivalent if and only if they are constantly proportional. (2020 preprint , arXiv:2001.08584).

In Riemannian geometry it is always true (for $n>1$). This result is attributed to H. Weyl, although it is a particular case of Levi-Civita Theorem, so we call such results sub-Riemannian Weyl theorems and the metric satisfying this result Weyl rigid.

Sub-Riemannian Weyl type results: briefly

The conjecture is also true if in addition we assume that the metrics under consideration are conformal, all objects are real analytic and (complexified) abnormal extremals of D satisfy some special properties:

In this case the conjecture says that two conformal metrics are locally projectively equivalent if and only if they are constantly proportional. (2020 preprint , arXiv:2001.08584).

In Riemannian geometry it is always true (for $n>1$). This result is attributed to H . Weyl, although it is a particular case of Levi-Civita Theorem, so we call such results sub-Riemannian Weyl theorems and the metric satisfying this result Weyl rigid.

Weaker separation results

If the Conjecture is true then it establish the separation/product structure for the distribution (if the metric is not conformally rigid, and also for the metric (at least in the cae of affine equivalence or a twisted vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

- Separation on the level of the nilpotent approximation of the sR metrics in projective case;
- Separation on the level of Jacobi curves along generic extremals (decoupling of the Jacobi equation) in the case fo affine equivalence but for more general than sub-Riemannian (sub-Finslerian, affine) problems.

Weaker separation results

If the Conjecture is true then it establish the separation/product structure for the distribution (if the metric is not conformally rigid, and also for the metric (at least in the cae of affine equivalence or a twisted vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

- Separation on the level of the nilpotent approximation of the $s R$ metrics in projective case;
- Separation on the level of Jacobi curves along generic extremals (decoupling of the Jacobi equation) in the case fo affine equivalence but for more general than sub-Riemannian (sub-Finslerian, affine) problems.

Weaker separation results

If the Conjecture is true then it establish the separation/product structure for the distribution (if the metric is not conformally rigid, and also for the metric (at least in the cae of affine equivalence or a twisted vversion fo it in the cae of projective equivalence).
We established two weaker separation results:

- Separation on the level of the nilpotent approximation of the $s R$ metrics in projective case;
- Separation on the level of Jacobi curves along generic extremals (decoupling of the Jacobi equation) in the case fo affine equivalence but for more general than sub-Riemannian (sub-Finslerian, affine) problems.

Tanaka symbol and nilpotent approximation of a distribution

D is called equiregular at q_{0} if all D^{j} have constant dimension in a neighborhood of q_{0}.

Definition

- The (Tanaka) symbol of an equiregular distribution D at a point q_{0} is the graded nilpotent Lie algebra
- The left-invariant distribution on the corresponding Lie group obtained by the left translation of $D\left(q_{0}\right)$ is called the nilpotent approximation of D at q_{0} and is denote by $\widehat{D}_{q_{0}}$.

Tanaka symbol and nilpotent approximation of a distribution

D is called equiregular at q_{0} if all D^{j} have constant dimension in a neighborhood of q_{0}.

Definition

- The (Tanaka) symbol of an equiregular distribution D at a point q_{0} is the graded nilpotent Lie algebra

$$
\underbrace{D\left(q_{0}\right)}_{\mathfrak{g}-1\left(q_{0}\right)} \oplus \underbrace{D^{2}\left(q_{0}\right) / D\left(q_{0}\right)}_{\mathfrak{g}-2\left(q_{0}\right)} \oplus \underbrace{D^{3}\left(q_{0}\right) / D^{2}\left(q_{0}\right)}_{\mathfrak{g}_{-3}\left(q_{0}\right)} \oplus \cdots
$$

- The left-invariant distribution on the corresponding Lie group obtained by the left translation of $D\left(q_{0}\right)$ is called the nilpotent approximation of D at q_{0} and is denote by \widehat{D}_{q}

Tanaka symbol and nilpotent approximation of a distribution

D is called equiregular at q_{0} if all D^{j} have constant dimension in a neighborhood of q_{0}.

Definition

- The (Tanaka) symbol of an equiregular distribution D at a point q_{0} is the graded nilpotent Lie algebra

$$
\underbrace{D\left(q_{0}\right)}_{\mathfrak{g}-1\left(q_{0}\right)} \oplus \underbrace{D^{2}\left(q_{0}\right) / D\left(q_{0}\right)}_{\mathfrak{g}_{-2}\left(q_{0}\right)} \oplus \underbrace{D^{3}\left(q_{0}\right) / D^{2}\left(q_{0}\right)}_{\mathfrak{g}_{-3}\left(q_{0}\right)} \oplus \cdots
$$

- The left-invariant distribution on the corresponding Lie group obtained by the left translation of $D\left(q_{0}\right)$ is called the nilpotent approximation of D at q_{0} and is denote by $\widehat{D}_{q_{0}}$.

Tanaka symbol and nilpotent approximation of a distribution

D is called equiregular at q_{0} if all D^{j} have constant dimension in a neighborhood of q_{0}.

Definition

- The (Tanaka) symbol of an equiregular distribution D at a point q_{0} is the graded nilpotent Lie algebra

$$
\underbrace{D\left(q_{0}\right)}_{\mathfrak{g}-1\left(q_{0}\right)} \oplus \underbrace{D^{2}\left(q_{0}\right) / D\left(q_{0}\right)}_{\mathfrak{g}_{-2}\left(q_{0}\right)} \oplus \underbrace{D^{3}\left(q_{0}\right) / D^{2}\left(q_{0}\right)}_{\mathfrak{g}_{-3}\left(q_{0}\right)} \oplus \cdots
$$

- The left-invariant distribution on the corresponding Lie group obtained by the left translation of $D\left(q_{0}\right)$ is called the nilpotent approximation of D at q_{0} and is denote by $\widehat{D}_{q_{0}}$.

Example: Tanaka symbol of contact distributions

For example, if D is a contact distribution of rank $2 n$, then its Tanaka symbol is isomorphic to the $2 n+1$ dimensional Heisenberg algebra:
defines a simplectic form σ on D, up to a multiplication by a constant corresponding to the choice of the basis vector Z of $\left.D^{2} / D\right)$.

Example: Tanaka symbol of contact distributions

For example, if D is a contact distribution of rank $2 n$, then its Tanaka symbol is isomorphic to the $2 n+1$ dimensional Heisenberg algebra:

$$
(X, Y) \mapsto[X, Y]
$$

defines a simplectic form σ on D, up to a multiplication by a constant, corresponding to the choice of the basis vector Z of D^{2} / D).

$$
[X, Y]=\sigma(X, Y) Z
$$

Take the Darboux basis $E_{1}, \ldots, E_{n}, F_{i}, \ldots F_{n}$ of D with respect to σ, i.e. such that $\sigma\left(E_{i}, F_{j}\right)=\delta_{i j}$.

Then $\left[E_{j}, F_{j}\right]=\delta_{i j} Z$ and it is the standard basis in the Heisenberg algebra.

Symbol and Nilpotent approximation of a sR structure

Definition

- The symbol of an sR metric g is the pair consisting of the Tanaka symbol of D at q_{0} and the Euclidean structure $g\left(q_{0}\right)$ on $D\left(q_{0}\right)$.
The nilpotent approximation of sub-Riemannian metric g on an equiregular distribution D at a point q_{0} is the left-invariant $s R$ structure \hat{g} on the Lie group of the Tanaka symbol of D at q_{0} such that the Euclidean structure at the identity coincides with the Euclidean structure at $D\left(q_{0}\right)$.

Symbol and Nilpotent approximation of a sR structure

Definition

- The symbol of an sR metric g is the pair consisting of the Tanaka symbol of D at q_{0} and the Euclidean structure $g\left(q_{0}\right)$ on $D\left(q_{0}\right)$.
- The nilpotent approximation of sub-Riemannian metric g on an equiregular distribution D at a point q_{0} is the left-invariant $s R$ structure \hat{g} on the Lie group of the Tanaka symbol of D at q_{0} such that the Euclidean structure at the identity coincides with the Euclidean structure at $D\left(q_{0}\right)$.

Direct product structure on the level of nilpotent approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If g_{1} and g_{2} are two sub-Riemannian metric on an equiregular distribution D, which are locally projectively equivalent around a stable point q_{0} and not conformal, then the nilpotent approximation $\hat{D}_{q_{0}}$ of D at q_{0} admits a product structure and the corresponding nilpotent approximations \hat{g}_{1} and \hat{g}_{2} form a Levi-Civita pair with constant coefficients.

> Corollary
> Any sub-Riemannian metric on a rank 2 bracket generating distribution is affinely rigid and conformally projectively rigid.

Direct product structure on the level of nilpotent approximation

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
If g_{1} and g_{2} are two sub-Riemannian metric on an equiregular distribution D, which are locally projectively equivalent around a stable point q_{0} and not conformal, then the nilpotent approximation $\hat{D}_{q_{0}}$ of D at q_{0} admits a product structure and the corresponding nilpotent approximations \hat{g}_{1} and \hat{g}_{2} form a Levi-Civita pair with constant coefficients.

Corollary

Any sub-Riemannian metric on a rank 2 bracket generating distribution is affinely rigid and conformally projectively rigid.

Genericity of indecomposable fundamental graded Lie algebras

Let GNLA (m, n) be the set of all n-dimensional negatively graded Lie algebras generated by the homogeneous component of weight -1 and such that this component has dimension m.

Proposition
Except the following two cases:
(1) $m=n-1$ with even n,
a generic element of GNLA (m, n) cannot be represented as a direct
sum of two graded Lie algebras.

Genericity of indecomposable fundamental graded Lie algebras

Let GNLA (m, n) be the set of all n-dimensional negatively graded Lie algebras generated by the homogeneous component of weight -1 and such that this component has dimension m.

Proposition

Except the following two cases:
(1) $m=n-1$ with even n,
(2) $(m, n)=(4,6)$,
a generic element of $\mathrm{GNLA}(m, n)$ cannot be represented as a direct sum of two graded Lie algebras.

Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)
Let m and n be two integers such that $2 \leq m<n$, and assume $(m, n) \neq(4,6)$ and $m \neq n-1$ if n is even. Then, given an n-dimensional manifold M and a generic rank m distribution D on M, any sub-Riemannian metric on (M, D) conformally projectively rigid and therefore affinely rigid
 rigid.

Rigidity of SR structures on generic distribution

Theorem (Geom. Dedicata, 2019, arXiv:1801.04257v2)

Let m and n be two integers such that $2 \leq m<n$, and assume $(m, n) \neq(4,6)$ and $m \neq n-1$ if n is even. Then, given an n-dimensional manifold M and a generic rank m distribution D on M, any sub-Riemannian metric on (M, D) conformally projectively rigid and therefore affinely rigid (and in the real analytic category even projectively rigid from the following sub-Riemannian Weyl results).

Theorem (preprint, arXiv:2001.08584)
Let m and n be two integers such that $2 \leq m<n$. On a generic real analytic rank m distribution D on a connected n-dimensional real analytic manifold M any sub-Riemannian metric is Weyl projectively rigid.

Decomposible in terms of spaces of skew-symmetric forms

If D is of step 2, i.e. when $D^{2}=T M$, then the Tanaka symbol is described by the the Levi operator $\mathcal{L}: \wedge^{2} D \mapsto D^{2} / D(\cong T M / D)$
equivalently, by the dual operator $\mathcal{L}: D^{*}$ म
The image of this operator is the $(n-m)$ -
the space of skew-symmetric forms on D
\square in some basis of $d=\mathfrak{g}-1$, the elements of Ω_{0}^{1} are $\left(\frac{A_{1}}{0} 0\right)$ and the elements of $\Omega_{\mathfrak{g}}^{2}$ are

Decomposible in terms of spaces of skew-symmetric forms

If D is of step 2, i.e. when $D^{2}=T M$, then the Tanaka symbol is described by the the Levi operator $\mathcal{L}: \wedge^{2} D \mapsto D^{2} / D(\cong T M / D)$ or , equivalently, by the dual operator $\mathcal{L}: D^{*} \mapsto \wedge^{2} D^{*}$.

the same nonzero size.

Decomposible in terms of spaces of skew-symmetric forms

If D is of step 2, i.e. when $D^{2}=T M$, then the Tanaka symbol is described by the the Levi operator $\mathcal{L}: \wedge^{2} D \mapsto D^{2} / D(\cong T M / D)$ or, equivalently, by the dual operator $\mathcal{L}: D^{*} \mapsto \wedge^{2} D^{*}$.
The image of this operator is the $(n-m)$-dimensional subspace Ω in the space of skew-symmetric forms on D.

The Tanaka symbol is decomposible if and only O mega $a_{\mathfrak{g}}=\Omega_{\mathfrak{g}}^{1} \oplus \Omega_{\mathfrak{g}}^{2}$ s.t
in some basis of $d=\mathfrak{g}-1$, the elements of $\Omega_{\mathfrak{g}}^{1}$ are $\left(\begin{array}{c|c}A_{1} & 0 \\ 0 & 0\end{array}\right)$ and the
elements of $\Omega_{\mathfrak{g}}^{2}$ are $\left(\frac{0}{0}\right)$, where the corresponding blocks have
the same nonzero size.

Decomposible in terms of spaces of skew-symmetric forms

If D is of step 2, i.e. when $D^{2}=T M$, then the Tanaka symbol is described by the the Levi operator $\mathcal{L}: \wedge^{2} D \mapsto D^{2} / D(\cong T M / D)$ or, equivalently, by the dual operator $\mathcal{L}: D^{*} \mapsto \wedge^{2} D^{*}$.
The image of this operator is the $(n-m)$-dimensional subspace Ω in the space of skew-symmetric forms on D.
The Tanaka symbol is decomposible if and only $\operatorname{Omega}_{\mathfrak{g}}=\Omega_{\mathfrak{g}}^{1} \oplus \Omega_{\mathfrak{g}}^{2}$ s.t. in some basis of $d=\mathfrak{g}_{-1}$, the elements of $\Omega_{\mathfrak{g}}^{1}$ are $\left(\begin{array}{c|c}A_{1} & 0 \\ \hline 0 & 0\end{array}\right)$ and the elements of $\Omega_{\mathfrak{g}}^{2}$ are $\left(\begin{array}{c|c}0 & 0 \\ \hline 0 & A_{2}\end{array}\right)$, where the corresponding blocks have the same nonzero size.

Why the Tanaka symbol in $(4,6)$ case is not generically indecomposible?

In the case of $n-m=2$ (i.e. corank is 2) it is a pencil (i.e. a plane) of skew-symmetric forms \Rightarrow Kronecker theory of pencils. For $(m, n)=(4,6)$ the equation Pfaffian $(\omega)=0, \omega \in \Omega$ is quadratic. If there are two distinguished (real) lines l_{1} and l_{2} in Ω satisfying this equation (an open condition), D_{1} and D_{2} are two planes, which are kernels of the forms on each line.
Ω_{g} can be decomposed into sum of two lines of the form
in the bases compatible with the splitting
Then $\widehat{D}=\widehat{D_{1}} \times \widehat{D_{2}}$, and D_{i} form contact (2,3) -distributions.

Why the Tanaka symbol in $(4,6)$ case is not generically indecomposible?

In the case of $n-m=2$ (i.e. corank is 2) it is a pencil (i.e. a plane) of skew-symmetric forms \Rightarrow Kronecker theory of pencils.
For $(m, n)=(4,6)$ the equation Pfaffian $(\omega)=0, \omega \in \Omega$ is quadratic.
If there are two distinguished (real) lines l_{1} and l_{2} in Ω satisfying this equation (an open condition),
Ω_{g} can be decomposed into sum of two lines of the form

Why the Tanaka symbol in $(4,6)$ case is not generically indecomposible?

In the case of $n-m=2$ (i.e. corank is 2) it is a pencil (i.e. a plane) of skew-symmetric forms \Rightarrow Kronecker theory of pencils.
For $(m, n)=(4,6)$ the equation Pfaffian $(\omega)=0, \omega \in \Omega$ is quadratic.
If there are two distinguished (real) lines l_{1} and l_{2} in Ω satisfying this equation (an open condition), D_{1} and D_{2} are two planes, which are kernels of the forms on each line.
Ω_{g} can be decomposed into sum of two lines of the form

Why the Tanaka symbol in $(4,6)$ case is not generically indecomposible?

In the case of $n-m=2$ (i.e. corank is 2) it is a pencil (i.e. a plane) of skew-symmetric forms \Rightarrow Kronecker theory of pencils.
For $(m, n)=(4,6)$ the equation Pfaffian $(\omega)=0, \omega \in \Omega$ is quadratic.
If there are two distinguished (real) lines l_{1} and l_{2} in Ω satisfying this equation (an open condition), D_{1} and D_{2} are two planes, which are kernels of the forms on each line. \Rightarrow
Ω_{g} can be decomposed into sum of two lines of the form $\left(\begin{array}{c|c}A_{1} & 0 \\ \hline 0 & 0\end{array}\right)$
and $\left(\begin{array}{c|c}0 & 0 \\ \hline 0 & A_{2}\end{array}\right)$ in the bases compatible with the splitting $D=D_{1} \oplus D_{2}$.
Then $\widehat{D}=\widehat{D_{1}} \times \widehat{D_{2}}$, and D_{i} form contact $(2,3)$-distributions.

Jacobi curves of normal extremals

Let Π_{λ} be the vertical subspace of $T_{\lambda} T^{*} M$, i.e. the tangent to the fiber at λ :

Let $h:=h_{g}$. To any extremal $e^{t \vec{h}} \lambda$ assign the curve of Lagrangian subspaces

in the symplectic space $T_{\lambda} T^{*} M$, the Jacobi curve of the extremal $e^{t h} \lambda$.

Jacobi curves of normal extremals

Let Π_{λ} be the vertical subspace of $T_{\lambda} T^{*} M$, i.e. the tangent to the fiber at λ :

Let $h:=h_{g}$. To any extremal $e^{t \vec{h}} \lambda$ assign the curve of Lagrangian subspaces
in the symplectic space $T_{\lambda} T^{*} M$, the Jacobi curve of the extremal $e^{t h} \lambda$.

Jacobi curves of normal extremals

Let Π_{λ} be the vertical subspace of $T_{\lambda} T^{*} M$, i.e. the tangent to the fiber at λ :

Let $h:=h_{g}$. To any extremal $e^{t \vec{h}} \lambda$ assign the curve of Lagrangian subspaces

$$
t \longmapsto \mathfrak{J}_{\lambda}(t):=d\left(e^{-t \vec{h}}\right)\left(\Pi_{e^{t \vec{h}_{\lambda}}}\right)
$$

in the symplectic space $T_{\lambda} T^{*} M$, the Jacobi curve of the extremal $e^{t \vec{h}} \lambda$.

Jacobi curves: conjugate points, sub-Riemannian connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
They contain all information about Jacobi fields and conjugate points along extremals.) For example, a point \tilde{t} is conjugate to 0 along the extremal $e^{\text {th }} \lambda$ iff
$\mathfrak{J}_{\lambda}(\tilde{t}) \cap \mathfrak{J}_{\lambda}(0) \neq 0$.

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the action of the symplectic group on $T_{\lambda} T^{*} M$) produces a function on $T^{*} M$ For example, symplectically invariant constructions with Jacobi curves of Riemannian extremals gives an alternative construction of the the Riemannian curvature tensor
Studying more general curves in LG one can construct analogous canonical (but non-linear) Ehresmann connection and curvature type invariants for any sub-Riemannian metric and more general geometric structure (Agrachev-I.Z.(20002).. Chengbo Li - $-Z . Z .(2009) . \quad \mathbf{8 1 / 9 0}$

Jacobi curves: conjugate points, sub-Riemannian connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
They contain all information about Jacobi fields and conjugate points along extremals.) extremal $e^{\text {th }} \lambda$ iff

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the action of the symplectic group on $T_{\lambda} T^{*} M$) produces a function on $T^{*} M$ For example, symplectically invariant constructions with Jacobi curves of Riemannian extremals gives an alternative construction of the the Riemannian curvature tensor

Studying more general curves in LG one can construct analogous canonical (but non-linear) Ehresmann connection and curvature type invariants for any sub-Riemannian metric and more general geometric

Jacobi curves: conjugate points, sub-Riemannian connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
They contain all information about Jacobi fields and conjugate points along extremals.) For example, a point \tilde{t} is conjugate to 0 along the extremal $e^{t \vec{h}} \lambda$ iff

$$
\mathfrak{J}_{\lambda}(\tilde{t}) \cap \mathfrak{J}_{\lambda}(0) \neq 0 .
$$

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the action of the symplectic group on $T_{\lambda} T^{*} M$) produces a function on T^{*} MI For example, symplectically invariant constructions with Jacobi curves of Riemannian extremals gives an alternative construction of the the Riemannian curvature tensor
Studying more general curves in LG one can construct analogous canonical (but non-linear) Ehresmann connection and curvature type invariants for any sub-Riemannian metric and more general geometric

Jacobi curves: conjugate points, sub-Riemannian connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
They contain all information about Jacobi fields and conjugate points along extremals.) For example, a point \tilde{t} is conjugate to 0 along the extremal $e^{t \vec{h}} \lambda$ iff

$$
\mathfrak{J}_{\lambda}(\tilde{t}) \cap \mathfrak{J}_{\lambda}(0) \neq 0 .
$$

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the action of the symplectic group on $T_{\lambda} T^{*} M$) produces a function on T^{*} MI For example, symplectically invariant constructions with Jacobi curves of Riemannian extremals gives an alternative construction of the the Riemannian curvature tensor
Studying more general curves in LG one can construct analogous canonical (but non-linear) Ehresmann connection and curvature type invariants for any sub-Riemannian metric and more general geometric

Jacobi curves: conjugate points, sub-Riemannian connection and curvature

Jacobi curves are curves in Lagrangian Grassmannians (LG).
They contain all information about Jacobi fields and conjugate points along extremals.) For example, a point \tilde{t} is conjugate to 0 along the extremal $e^{t \vec{n}} \lambda \mathrm{iff}$

$$
\mathfrak{J}_{\lambda}(\tilde{t}) \cap \mathfrak{J}_{\lambda}(0) \neq 0 .
$$

Any symplectic invariant of a Jacobi curve (i.e. the invariant under the action of the symplectic group on $T_{\lambda} T^{*} M$) produces a function on $T^{*} M$ For example, symplectically invariant constructions with Jacobi curves of Riemannian extremals gives an alternative construction of the the Riemannian curvature tensor .
Studying more general curves in LG one can construct analogous canonical (but non-linear) Ehresmann connection and curvature type invariants for any sub-Riemannian metric and more general geometric structure (Agrachev-I.Z.(20002)., Chengbo Li -I.Z. (2009).

Separation/direct product on the level of Jacobi equations/Jacobi curves of extremals

Projective/affine equivalence of g_{1} and $g_{2} \Rightarrow$ existence of the fiber-preserving preserving orbital diffeomorphism Φ between Hamiltonian flows of the correspondng HAmiltonians $\vec{h}_{g_{1}}$ and $\vec{h}_{g_{2}}$ on the open dense set of $T^{*} M$

Separation/direct product on the level of Jacobi equations/Jacobi curves of extremals

Projective/affine equivalence of g_{1} and $g_{2} \Rightarrow$ existence of the fiber-preserving preserving orbital diffeomorphism Φ between Hamiltonian flows of the correspondng HAmiltonians $\vec{h}_{g_{1}}$ and $\vec{h}_{g_{2}}$ on the open dense set of $T^{*} M \Rightarrow$
Φ_{*} sends the Jacobi curve at λ of the corresponding extremal of g_{1} to the Jacobi curve at $\Phi(\lambda)$ of the corresponding extremal g_{2} (the curves are considered as unparametrized curves)

Theorem (I.Z.)
If a sub-Riemannian metric is not affinely rigid, then the Jacobi curve
of a generic normal extremal is a direct product of curves in
Lagrangian Grassmannians of smaller dimensions.

Separation/direct product on the level of Jacobi equations/Jacobi curves of extremals

Projective/affine equivalence of g_{1} and $g_{2} \Rightarrow$ existence of the fiber-preserving preserving orbital diffeomorphism Φ between Hamiltonian flows of the correspondng HAmiltonians $\vec{h}_{g_{1}}$ and $\vec{h}_{g_{2}}$ on the open dense set of $T^{*} M \Rightarrow$
Φ_{*} sends the Jacobi curve at λ of the corresponding extremal of g_{1} to the Jacobi curve at $\Phi(\lambda)$ of the corresponding extremal g_{2} (the curves are considered as unparametrized curves)

Theorem (I.Z.)

If a sub-Riemannian metric is not affinely rigid, then the Jacobi curve of a generic normal extremal is a direct product of curves in Lagrangian Grassmannians of smaller dimensions.

References

1. I. Zelenko, On geodesic equivalence of Riemannian metrics and sub-Riemannian metrics on distributions of corank 1, J. Math. Sci. (N. Y.) 135 (2006), no. 4, 3168-3194.
2. F. Jean, S. Maslovskaya, and I. Zelenko, Inverse Optimal Control Problem: the Sub-Riemannian Case, Proceedings of IFAC (International Federation of Automatic Control) IFAC-papersOnLine , vol 50, 2017, 7 pages.
3. F. Jean, S. Maslovskaya, and I. Zelenko, On projective and affine equivalence of sub-Riemannian metrics, Geom. Dedicata , volume 203, 279-319(2019).
4. F. Jean, S. Maslovskaya, and I. Zelenko, On Weyl's type theorems and genericity of projective rigidity in sub-Riemannian Geometry, preprint, submitted arXiv:2001.08584, 18 pages
5. A. Agrachev, I. Zelenko, Geometry of Jacobi curves. I,II , J. Dynamical and Control systems, 8(2002),No. 1, 93-140, No. 2, 167-215.
6. I. Zelenko, C. Li, Differential geometry of curves in Lagrange Grassmannians with given Young diagram, Differential Geometry and Its Applications, 27 (2009), 723-742.

THANK YOU VERY MUCH FOR YOUR ATTENTION!

