
Supplementary lecture notes/ worksheets in MATH309 - Spring 2013

for the classes of Igor Zelenko of February 1 and 4

Definition of determinant using permutations

Print these worksheets and bring them to the classes of February 1 and 4. Try to
read them ( at least the first four pages) and to answer the questions below before
the class of Friday, February 1. You have an option to submit these sheets with your
answers to the questions below for the extra credit at the beginning of the Friday
class. You may submit only first four pages, there is no questions to answer in the
rest. In this case please photocopy these four pages before your submission in order
to have them during the class because we will work on them. The submission will
weigh totally a half of a homework assignment. A partial credit will be given as well.

The definition of the determinant of n × n matrix by induction via the expansion along the
first row, given in the textbook on page 89, is probably the quickest way to introduce this notion.
However, this definition is not convenient for explaining the main properties of the determinant
and this is probably the main reason why for example Theorem 2.1.1 (in the same page of the
textbook right after this definition) about the expansion along any row and column is neither
proved nor even explained there, while the proof of other results (for example the next Theorem
2.1.2) is heavily based on the same unproved Theorem 2.1.1.

Below I describe another (very standard/common/classical) way to define the determinant. Al-
though this way seems to be more complicated at first glance and needs some additional concepts
from Combinatorics, it is significantly elucidate the notion of the determinant and its proper-
ties. So, I am convinced that the additional efforts needed to understand this definition and the
combinatorial notions related to it will well paid off for your final understanding of this topic.

1. Permutations, inversions, and signature of permutation

Definition 1. An array (j1 j2 . . . jn) of integers from 1 to n such that each number from 1 to n
appears exactly once is called a permutation (of first n integers). In other words, a permutation is
an array when the first n integers are written in some order.

For example (3 2 1) is a permutation but (1 2 1) is not, because 3 does not appear there (or
because 1 appears twice).

If n = 2 there are 2 permutations: (1 2) and (2 1).
Question 1. If n = 3

• list all permutations:

• how many permutation do you have?
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Question 2. For general n how many permutation (of first n integers) are there?

How are permutations related to the determinant? Let us look more carefully in the expansions
of the determinant of 2× 2 and 3× 3 matrices (that you learned in your previous courses starting
from High School Algebra 2 and also in Engineering Calculus 3 and Differential Equations):

det

(
a11 a12
a21 a22

)
= a11a12 − a12a21 (1)

det

a11 a12 a13
a21 a22 a23
a31 a32 a33

 = a11 det

(
a22 a23
a32 a33

)
− a12 det

(
a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)
=

a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31. (2)

In both cases the determinant is a sum of n! terms of the form

±a1j1a2j1 . . . anjn

(± means that it is taken either with + or with −), where (j1 j2 . . . jn) is a permutation of first n
integers.

For example

• the term a11a22 in the right hand side of equation (1) corresponds to the permutation (1 2)
and it is taken with +,

• the term a12a21 in the right hand side of equation (1) corresponds to the permutation (2 1)
and it is taken with −,

• the term a13a21a32 in the right hand side of equation (2) corresponds to the permutation
(3 1 2) and it is taken with +,

Question 3. To what permutation does the term a13a22a31 in the right hand side of equation
(2) correspond?

Note that it is taken with − there.

The key point is that the same expansion of the determinant is valid for general n. The big
question is: With what sign, + or −, the term a1j1a2j1 . . . anjn should be taken?

In order to answer this question we need the following

Definition 2. A pair of numbers (jk, jl) in the permutation (j1 j2 . . . jn) is called an inversion if
k < l and jk > jl. In other words, if a larger number precedes a smaller one in the permutation
(j1, j2, . . . , jn) then these two numbers create an inversion.
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Definition 3. The number

σ(j1, j2, . . . jn) = (−1)# of inversions in (j1,j2,...,jn)

is called the signature of the permutation (j1 j2 . . . jn). In other words

σ(j1, j2, . . . jn) =

{
1 if #of inversions in (j1, j2, . . . , jn) is even

−1 if #of inversions in (j1, j2, . . . , jn) is odd

In the first case the permutation is called even and in the second case it is called odd.

For example,

• In the permutation (1 2) there is no inversion, so it is an even permutation and its signature
is 1;

• In the permutation (2 1) there is 1 inversion: (2, 1), so it is an odd permutation and σ(2, 1) =
−1;

• In the permutation (3 1 2) the inversions are (3, 1) and (3, 2). So, there are 2 inversions, the
permutation is even and its signature is equal to 1;

Question 4. Given the permutation (3 2 1)

• List all its inversions:

• Decide whether it is an even or odd permutation:

• Find its signature:

Question 5. Given the permutation (3 4 2 1)

• List all its inversions:

• Decide whether it is an even or odd permutation:

• Find its signature:

Question 6. Given the permutation (5 2 1 4 3)

• List all its inversions:

• Decide whether it is an even or odd permutation:
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• Find its signature:

Now we are ready to give the general definition of the determinant:

Definition 4. Given an n× n matrix A = (aij) the determinant det(A) is the following number

det(A) :=
∑

all permutations (j1 j2 ... jn)

σ(j1, . . . , jn)a1j1a2j1 . . . anjn (3)

In other words, the sign of the term a1j1a2j1 . . . anjn in the expansion of the determinant is equal
to the signature of the permutation (j1 j2 . . . jn).

Question 7. Show that Definition 4 matches our previous definition of the determinant

• for n = 2

• for n = 3

I will explain on the whiteboard why the inductive definition via the expansion along the first
row given previously matches Definition 4 (take the notes in your notebook).

Question 8. Let A = (aij) be a 5 × 5 matrix. Determine with what sign appear the term
a15a21a32a44a53 in the expansion of the determinant of A: For this you need to answer the following
questions:

• To what permutation (of first 5 integers) does this term correspond?

• List all inversions of this permutation:

• What is the signature of this permutation and therefore the answer to the original question?:

The expansion (3) is not convenient for calculation of the determinant: you need to perform
n · n! multiplications and n! − 1 additions/subtractions in order to do that ( figure out what are
these numbers already for n = 5) but it is very convenient in order to understand the properties
of the determinant and in this way to justify other, more efficient ways for calculations of the
determinant (based on the row/column operations).
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2. Transpositions

Below I will focus on several additional combinatorial aspects related to the notion of signature
of a permutation that will help us in justifying Theorem 2.1.1 and the rest of the material of
Sections 2.1 and 2.2. I introduce the important notion of a transposition of a permutation and
state and prove (for completeness) two important properties of them which are the basis for the
theory of determinants. You may skip the proofs but I still recommend to read them, because I
tried to make them as transparent and short as possible. I also will try to explain (also graphically)
the main ideas of them on the whiteboard.

Definition 5. An interchanging of any two elements in a permutation (with all other elements re-
maining in their places) is called a transposition . An interchanging of any two adjacent elements in
a permutation (with all other elements remaining in their places) is called an elementary transposition.

For example, (2 1 3 4) 7→ (2 4 3 1) is a transposition because we interchange 1 and 4 with 2 and
3 remaining in their places but it is not an elementary transposition, because 1 and 4 are not
adjacent in (2 1 3 4). However, you can represent this transposition as a series (a composition) of
3 elementary transpositions:

(2 1 3 4) 7→ (2 3 1 4) 7→ (2 3 4 1) 7→ (2 4 3 1) (4)

(first we swap 1 and 3, then 1 and 4, i.e. in this way we move 1 to the forth place, and finally we
swap 3 and 4).

Proposition 1. A transposition changes the parity of a permutation, i.e. if we perform a trans-
position in an even permutation then the resulting permutation becomes odd and if we perform a
transposition in an odd permutation then the resulting permutation becomes even.

Proof.
1. After an elementary transposition the number of inversion increases by 1 or decreases by

1. Indeed, if you swap two adjacent elements such that initially the larger one was on the right,
then one new inversion is created (and the rest remains the same) and if you swap two adjacent
elements such that initially the larger one was on the left, then one inversion disappears (and the
rest remains the same). So, in both cases the parity of the permutation changes.

2. Any transposition is a series (a composition) of an odd number of elementary transpositions
(as in (4)): Indeed, if a transposition interchanges jk and jl (where k < l) then using l − k
elementary transpositions you move jk to the lth place, then jl became in the (l − 1)st place and
so you need other l − k − 1 elementary transpositions to move jl to the kth place. Thus we used
l − k + l − k − 1 = 2(l − k)− 1 transpositions in total, which is an odd number. By part 1 of the
proof each elementary transposition changes the parity of the permutations. Therefore the odd
number of elementary transpositions changes the parity of the permutations.

Using Definition 4 and Proposition 1 it is almost immediate to show that interchanging
any row in a matrix changes the sign of the determinant, then also to prove the part
of (unproved) Theorem 2.1.1, page 89, regarding the expansion along an arbitrary row and other
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properties listed in sections 2.1 and 2.2 (I will formulate and justify all these properties on the
whiteboard, take notes in your notebook).

Another useful property of transpositions is given in the following

Proposition 2. The parity of a permutation (j1 j2 . . . jn) is equal to the parity of a number of
transposition needed to obtain from this permutation the permutation (1 2 . . . n)

Proof. 1. First, let us describe one way to transform the permutation (j1 j2 . . . jn) to the
permutation (1 2 . . . n) by a series of transpositions such that the number of transposition used in
it is exactly equal to the number of inversions in (j1 j2 . . . jn). For this note that the permutation
(1 2 . . . n) is the only permutation without inversions. If (j1 j2 . . . jn) = (1 2 . . . n) there is nothing
to do. Otherwise, there exist at least one inversion in (j1 j2 . . . jn) and therefore there exist at
least one inversion in (j1 j2 . . . jn) consisting of adjacent elements. Swapping the elements in this
inversion we decrease the number of inversions exactly by 1. We may repeat the process a finite
number of times until we get 0 inversions (or, equivalently, the permutation (1 2 . . . n)) decreasing
on each step the number of inversions exactly by 1 using exactly one elementary transposition.
Moreover, by the latter the total number of times we do this is equal on one hand to the number
of inversions in (j1 j2 . . . jn) and on the other hand to the number of transposition used. It shows
that indeed we can transform the permutation (j1 j2 . . . jn) to the permutation (1 2 . . . n) by the
number of transpositions equal to the number of inversions in (j1 j2 . . . jn).

2 Note that there are many ways to transform the permutation (j1 j2 . . . jn) to the permutation
(1 2 . . . n) but the parity of the number of transpositions for all such ways must be the same,
otherwise by Proposition 1 (j1 j2 . . . jn) will be both even and odd, which is impossible. Therefore
from part 1 of the proof it follows that the parity of the number of transpositions in any such way
is equal to the parity of the number of inversions in (j1 j2 . . . jn), because these parity are equal
at least for one such way (described in part 1). On the other hand, the parity of the number of
inversions in (j1 j2 . . . jn) is equal by Definition 3 to the parity of the permutation (j1 j2 . . . jn),
which completes the proof of the proposition.

Using Proposition 2 one can prove almost immediately the part of (unproved) Theorem 2.1.1,
page 89, regarding the expansion along an arbitrary column which in turn shows that all properties
of the determinant related to the row operations are automatically valid for the corresponding
column operations (will be discussed on the whiteboard in more detail).
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