Extra credit regarding some steps in the proof of compatibility of a conification, MATH666, Fall 2013
 submit before the end of last class of the term

1. Assume that $\lambda:[0, T] \mapsto[0,1]$ be an integrable function and for any natural n let A_{n} be a subset of $[0, T]$ defined as follows

$$
A_{n}:=\bigcup_{k=0}^{n-1}\left[\frac{T k}{n}, \frac{T k}{n}+\int_{\frac{T k}{n}}^{\frac{T(k+1)}{n}} \lambda(t) d t\right]
$$

Let $\chi_{A_{n}}$ be the characteristic function of the set A_{n} :

$$
\chi_{A_{n}}(t)= \begin{cases}1 & \text { if } t \in A_{n} \\ 0 & \text { if } t \notin A_{n}\end{cases}
$$

Prove that for any function $\varphi \in L_{1}([0, T])$ (i.e. such that $|\varphi|$ is integrable on $\left.[0, T]\right)$

$$
\int_{0}^{T} \chi_{A_{n}}(\tau) \varphi(\tau) d \tau \underset{n \rightarrow \infty}{ } \int_{0}^{T} \lambda(\tau) \varphi(\tau) d \tau
$$

and the convergence is uniform on $[0, T]$ (Hint: first prove the statement for a characteristic function $\chi_{[a, b]}$ of an interval and then use that the set of step functions are dense in $\left.L_{1}([0, T])\right)$.
2. Let Y_{1} and Y_{2} be two complete vector fields on \mathbb{R}^{n}, which are also Lipshitzian, i.e there exist $L_{i}>0$ such that $\left\|Y_{i}\left(x_{1}\right)-Y_{i}\left(x_{2}\right)\right\| \leq L_{1}\left\|x_{1}-x_{2}\right\|$ for any $x_{1}, x_{2} \in \mathbb{R}^{n}, i \in\{1,2\}$. Let T, λ, A_{n} be as in the previous problem. Further, assume that $q(t)$ is the trajectory of the vector field $\lambda(t) Y_{1}+(1-\lambda(t)) Y_{2}$ with $q(0)=q_{0}$ and $q_{n}(t)$ are the trajctories of the vector field $\chi_{A_{n}}(t) Y_{1}+\left(1-\chi_{A_{n}}(t)\right) Y_{2}$ with $q_{n}(0)=q_{n}$ and such that $q_{n} \xrightarrow[n \rightarrow \infty]{ } q_{0}$. Prove that $q_{n}(t) \xrightarrow[n \rightarrow \infty]{\longrightarrow} q(t)$ uniformly on $[0, T]$.
Hint: Use the Gronwall inequality: if $y(\tau), \beta(\tau)$ are continuous and take non-negative valued on $[0, T], \alpha \geq 0$ such that $y(t) \leq \alpha+\int_{0}^{t} \beta(\tau) y(\tau) d \tau$ for $t \in[0, T]$, then $y(t) \leq \alpha e^{\int_{0}^{t} \beta(\tau) d \tau}$.

Remark: In this setting some assumptions (like $M=\mathbb{R}^{n}$ instead of general manifold) are stronger than those I made in class and some assumptions are weaker (like $q_{n} \xrightarrow[n \rightarrow \infty]{ } q_{0}$ instead of $q_{n}=q_{0}$). To use this statement for proving the compatibility of the convex combination we cover the trajectory $q(t)$ by finite number of coordinate neighborhoods (it is possible to do due compactness) and use the statement on each of them (we need to assume that $q_{n} \xrightarrow[n \rightarrow \infty]{ } q_{0}$ instead of $q_{n}=q_{0}$ in order to make the gluing).

