Inverse Laplace transform of rational functions via Partial Fraction Decomposition over complex numbers

In the previous file we discussed the partial fraction decomposition of rational functions $\frac{P(s)}{Q(s)}$ with $\operatorname{deg} P(s)<\operatorname{deg} Q(s)$. The method consist of factoring the denominator $Q(s)$ as much as possible. We worked with real coefficients only and therefore in this factorization there are two types of factors:

1. linear (may be repeated) factor corresponding to a real root of $Q(s)$;
2. quadratic (may be repeated) factors corresponding to to a pair of complex conjugate roots of $Q(s)$.

Another idea is to allow complex coefficients in the partial fraction decomposition. Then we have only one type of factors: linear (maybe repeated) factor corresponding either to a real or to a complex root.

Then we can proceed as in cases 1 and 2 of the previous file (the cases 3 and 4 can be removed in this method). Each factor in the decomposition of $Q(s)$ gives a contribution of certain type to the partial fraction decomposition of $\frac{P(s)}{Q(s)}$. Below we list these contributions depending on the type of the factor and identify the inverse Laplace transform of these contributions (in the case of (non-real) complex roots we just need to use the Euler formula to return from complex valued functions to real valued functions):

Case 1 A non-repeated linear factor $(s-a)$ of $Q(s)$ (corresponding to the root a of $Q(s)$ of multiplicity 1) gives a contribution of the form $\frac{A}{s-a}$. Then $\mathcal{L}^{-1}\left\{\frac{A}{s-a}\right\}=A e^{a t}$;

Case 2 A repeated linear factor $(s-a)^{m}$ of $Q(s)$ (corresponding to the root a of $Q(s)$ of multiplicity $m)$ gives a contribution which is a sum of terms of the form $\frac{A_{i}}{(s-a)^{i}}, 1 \leq i \leq m$. Then

$$
\mathcal{L}^{-1}\left\{\frac{A_{i}}{(s-a)^{i}}\right\}=\frac{A_{i}}{(i-1)!} t^{i-1} e^{a t}
$$

;
Example (will be solved later also using convolution) Find the inverse Laplace transform of $F(s)=\frac{1}{\left(s^{2}+1\right)^{2}}$.

Solution: $Q(s)=\left(s^{2}+1\right)^{2}=(s-i)^{2}(s+i)^{2} \Rightarrow Q(s)$ has two complex roots i and $-i$ both of multiplicity 2 . Therefore the partial fraction decomposition of $F(s)$ over complex numbers has the form:

$$
\begin{gather*}
\frac{1}{\left(s^{2}+1\right)^{2}}=\frac{A}{s-i}+\frac{B}{(s-i)^{2}}+\frac{C}{s+i}+\frac{D}{(s+i)^{2}} \Rightarrow \\
1=A(s-i)(s+i)^{2}+B(s+i)^{2}+C(s+i)(s-i)^{2}+D(s-i)^{2}=A\left(s^{2}+1\right)(s-i)+B(s+i)^{2}+C\left(s^{2}+1\right)(s+i)+D(s-i)^{2} . \tag{1}
\end{gather*}
$$

Determine A, B, C, and D :

1. Plug in $s=i \Rightarrow 1=B(2 i)^{2}=-4 B \Rightarrow B=-\frac{1}{4}$;
2. Plug in $s==i \Rightarrow 1=D(-2 i)^{2}=-4 B \Rightarrow D=-\frac{1}{4}$
3. Equate coefficients near s^{3} in (1): $0=A+C$;
4. Equate coefficient near s^{2} in (1) and use items 1 and 2 above: $0=i A-i C-\frac{1}{4}-\frac{1}{4}=i(A-C)-\frac{1}{2}$;
5. From items 3 and 4 we get the following system of equations for A and C :

$$
\left\{\begin{array}{l}
A+C=0 \\
A-C=\frac{1}{2 i}
\end{array} \Rightarrow\right.
$$

By elimination, $A=\frac{1}{4 i}, C=-\frac{1}{4 i}$.
Therefore,

$$
\frac{1}{\left(s^{2}+1\right)^{2}}=\frac{1}{4 i}\left(\frac{1}{s-i}-\frac{1}{s+i}\right)-\frac{1}{4}\left(\frac{1}{(s-i)^{2}}+\frac{1}{(s+i)^{2}}\right) .
$$

Recall that $\mathcal{L}^{-1}\left\{\frac{1}{s-a}\right\}=e^{a t}, \mathcal{L}^{-1}\left\{\frac{1}{(s-a)^{2}}\right\}=t e^{a t}$ for any complex a. Therefore

$$
\mathcal{L}\left\{\frac{1}{\left(s^{2}+1\right)^{2}}\right\}=\frac{1}{4 i}\left(e^{i t}-e^{-i t}\right)-\frac{1}{4} t\left(e^{i t}+e^{-i t}\right) \stackrel{\text { Euler's formulas }}{=} \frac{1}{2} \sin t-\frac{1}{2} t \cos t .
$$

