Workshop on "Geometry of vector distributions, differential equations, and variational problems"

SISSA, Trieste, Italy, 13–15 December 2006 Abstracts of the talks

Dmitri Alekseevsky (University of Hull, UK) Homogeneous bi-Lagrangian manifolds of semisimple group and generalized Gauss decompositions

The talk is bases on a joint work with C.Medori (Parma).

A bi-Lagrangian structure on a (real or complex) symplectic manifold (M, ω) is a decomposition $TM = T^+ + T^-$ of the tangent bundle TM into a direct sum of integrable Lagrangian ($\omega|_{T^{\pm}} = 0$) subbundles T^{\pm} . In the real case, a manifold M with a bi-Lagrangian structure (ω, T^{\pm}) can be identified with a para-Kähler manifold (M, g, J) where $J \in \Gamma(\text{End}TM)$ is the involutive endomorphism with ± 1 -eigenspace distributions T^{\pm} and $g = \omega \circ J$ is the pseudo-Riemannian metric such that the endomorphism J is g-skew-symmetric and parallel with respect to Levi-Civita connection of g.

The problem of classification of bi-Lagrangian manifolds (M, ω, T^{\pm}) which admit a semisimple transitive Lie group G of automorphisms reduces to a description of generalized Gauss decompositions

$$\mathfrak{g}=\mathfrak{k}+\mathfrak{m}^++\mathfrak{m}^-$$

of the Lie algebra \mathfrak{g} of G where $\mathfrak{p}^{\pm} := \mathfrak{k} + \mathfrak{m}^{\pm}$ are opposite parabolic subalgebras with the reductive part \mathfrak{k} which is the stability subalgebra of \mathfrak{g} . We give a description of such decomposition of a complex semisimple Lie algebra \mathfrak{g} in terms of crossed Dynkin diagrams and a real semisimple Lie algebra \mathfrak{g} in terms of crossed Satake diagrams.