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Let N be a smooth manifold and let P = (P1, . . . , Pr) be an ordered set of real (or complex)
distributions on N , i.e.

Pi : N 3 a 7→ Pi (a) ⊂ TaN (or TaN
C).

The set P is called an almost product structure or a P-structure [1] on N if at each point
a ∈ N the tangent space TaN (for real distributions) or its complexification TaN

C (for complex
ones) splits in the direct sum of the subspaces P1 (a) , . . . , Pr (a), i.e. TaN = ⊕r

i=1Pi (a) or
TaN

C = ⊕r
i=1Pi (a).

We get the following decomposition of the de Rham complex: the C∞ (N)-modules of differ-
ential s-forms Ωs (N) split in the direct sum

(0.1) Ωs (N) = ⊕
|k|=s

Ωk (N) ,

where k is a multiindex, k =(k1, . . . , kr), ki ∈ {0, 1, . . . , ni}, ni = dimPi, |k| = k1 + · · ·+ kr,

Ωk (N) = ⊗r
i=1Ω

and

Ωki(Pi) =
{

α ∈ Ωki (N)
∣∣∣ Xcα = 0 ∀X ∈ D(P1)⊕ · · · ⊕ D̂ (Pi)⊕ · · · ⊕D (Pr)

}
.

In case of complex almost product structures we have to consider the complexification Ωs (N)C

of the module Ωs (N).
The de Rham differential d splits in the following direct sum:

d = ⊕
|t|=1

dt,

where tj ∈ Ij= {z ∈ Z| |z| ≤ dim Pj} and

dt : Ωk(N) → Ωk+σ(N).

Theorem 1. If one of the component ti of a multi-index t is negative, then operator dt is a
C∞(N)-homomorphism.

In the other words, if one of the components ti of the multiindex t is negative, then operator
dt is tensor which acts from Ωk(N) to Ωk+t(N). Such tensors are invariant with respect to
diffeomorphisms.

Any (hyperbolic or elliptic) classical Monge-Ampère equation on a two-dimensiomnal manifold
M

(0.2) Avxx + 2Bvxy + Cvyy + D
(
vxxvyy − v2

xy

)
+ E = 0.

is an almost product structure (real or complex) on the manifold of 1-jets J1(M) (see [1]).
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Jacobi equations [1]
A1 + B1

∂v1

∂x
− C1

∂v1

∂y
−D1

∂v2

∂y
+ E1

∂v2

∂x
+ F1 det Jv = 0,

A2 + B2
∂v1

∂x
− C2

∂v1

∂y
−D2

∂v2

∂y
+ E2

∂v2

∂x
+ F2 det Jv = 0,

can be regarded as almost product structures on a 4-dimensional manifold. Here

det Jv =

∣∣∣∣∣∣∣
∂v1

∂x

∂v1

∂y
∂v2

∂y

∂v2

∂x

∣∣∣∣∣∣∣
is a Jacobian and Ai, Bi, Ci, Di, Ei, Fi (i = 1, 2) are some functions on x, y, v.

We applly constructed tensors to the problem of classification of Monge-Ampère and Jacobi
equations solve the problem linearization of ones.
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