Workshop on "Geometry of vector distributions, differential equations, and variational problems"

SISSA, Trieste, Italy, 13–15 December 2006 Abstracts of the talks

Aleksei Kushner (Astrakhan State University and Control Sciences Institute of the Russian Academy of Sciences, Moscow, Russia) *Invariants of almost-product structures and geometry of Monge-Ampere and Jacobi equations*

Let N be a smooth manifold and let $\mathcal{P} = (P_1, \ldots, P_r)$ be an ordered set of real (or complex) distributions on N, i.e.

$$P_i: N \ni a \mapsto P_i(a) \subset T_a N \quad (\text{or } T_a N^{\mathbb{C}}).$$

The set \mathcal{P} is called an *almost product structure* or a \mathcal{P} -structure [1] on N if at each point $a \in N$ the tangent space $T_a N$ (for real distributions) or its complexification $T_a N^{\mathbb{C}}$ (for complex ones) splits in the direct sum of the subspaces $P_1(a), \ldots, P_r(a)$, i.e. $T_a N = \bigoplus_{i=1}^r P_i(a)$ or $T_a N^{\mathbb{C}} = \bigoplus_{i=1}^r P_i(a)$.

We get the following decomposition of the de Rham complex: the $C^{\infty}(N)$ -modules of differential s-forms $\Omega^{s}(N)$ split in the direct sum

(0.1)
$$\Omega^{s}(N) = \bigoplus_{|\mathbf{k}|=s} \Omega^{\mathbf{k}}(N),$$

where **k** is a multiindex, $\mathbf{k} = (k_1, ..., k_r), k_i \in \{0, 1, ..., n_i\}, n_i = dim P_i, |\mathbf{k}| = k_1 + \dots + k_r$

$$\Omega^{\mathbf{k}}\left(N\right) = \bigotimes_{i=1}^{r} \Omega$$

and

$$\Omega^{k_i}(P_i) = \left\{ \alpha \in \Omega^{k_i}(N) \middle| X \rfloor \alpha = 0 \ \forall X \in D(P_1) \oplus \dots \oplus \widehat{D(P_i)} \oplus \dots \oplus D(P_r) \right\}.$$

In case of complex almost product structures we have to consider the complexification $\Omega^{s}(N)^{\mathbb{C}}$ of the module $\Omega^{s}(N)$.

The de Rham differential d splits in the following direct sum:

$$d = \bigoplus_{|\mathbf{t}|=1} d_{\mathbf{t}},$$

where $t_j \in I_j = \{ z \in \mathbb{Z} | |z| \le \dim P_j \}$ and

$$d_{\mathbf{t}}: \Omega^{\mathbf{k}}(N) \to \Omega^{\mathbf{k}+\sigma}(N).$$

Theorem 1. If one of the component t_i of a multi-index **t** is negative, then operator d_t is a $C^{\infty}(N)$ -homomorphism.

In the other words, if one of the components t_i of the multiindex **t** is negative, then operator $d_{\mathbf{t}}$ is tensor which acts from $\Omega^{\mathbf{k}}(N)$ to $\Omega^{\mathbf{k}+\mathbf{t}}(N)$. Such tensors are invariant with respect to diffeomorphisms.

Any (hyperbolic or elliptic) classical Monge-Ampère equation on a two-dimensionnal manifold ${\cal M}$

(0.2)
$$Av_{xx} + 2Bv_{xy} + Cv_{yy} + D\left(v_{xx}v_{yy} - v_{xy}^2\right) + E = 0.$$

is an almost product structure (real or complex) on the manifold of 1-jets $J^1(M)$ (see [1]).

Jacobi equations [1]

$$\begin{cases} A_1 + B_1 \frac{\partial v_1}{\partial x} - C_1 \frac{\partial v_1}{\partial y} - D_1 \frac{\partial v_2}{\partial y} + E_1 \frac{\partial v_2}{\partial x} + F_1 \det J_v = 0, \\ A_2 + B_2 \frac{\partial v_1}{\partial x} - C_2 \frac{\partial v_1}{\partial y} - D_2 \frac{\partial v_2}{\partial y} + E_2 \frac{\partial v_2}{\partial x} + F_2 \det J_v = 0, \end{cases}$$

can be regarded as almost product structures on a 4-dimensional manifold. Here

$$\det J_v = \begin{vmatrix} \frac{\partial v_1}{\partial x} & \frac{\partial v_1}{\partial y} \\ \frac{\partial v_2}{\partial y} & \frac{\partial v_2}{\partial x} \end{vmatrix}$$

is a Jacobian and $A_i, B_i, C_i, D_i, E_i, F_i$ (i = 1, 2) are some functions on x, y, v.

We apply constructed tensors to the problem of classification of Monge-Ampère and Jacobi equations solve the problem linearization of ones.

[1] Kushner A., Lychagin V., Ruvtsov V., *Contact geometry of non-linear differential equations*, Cambbridge University Press, Cambridge, UK, (2006) (in press).