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HOMOGENEOUS BI-LAGRANGIAN MANIFOLDS OF SEMISIMPLE

GROUP AND GENERALIZED GAUSS DECOMPOSITIONS

Dmitri Alekseevsky

University of Hull, UK

The talk is bases on a joint work with C.Medori (Parma).

A bi-Lagrangian structure on a (real or complex) symplectic manifold (M,ω) is a decomposition

TM = T++T− of the tangent bundle TM into a direct sum of integrable Lagrangian ( ω|T± = 0)

subbundles T±. In the real case, a manifold M with a bi-Lagrangian structure (ω, T±) can be

identified with a para-Kähler manifold (M, g, J) where J ∈ Γ(EndTM) is the involutive endo-

morphism with ±1-eigenspace distributions T± and g = ω ◦ J is the pseudo-Riemannian metric

such that the endomorphism J is g-skew-symmetric and parallel with respect to Levi-Civita

connection of g.

The problem of classification of bi-Lagrangian manifolds (M,ω, T±) which admit a semisimple

transitive Lie group G of automorphisms reduces to a description of generalized Gauss decom-

positions

g = k + m+ + m−

of the Lie algebra g of G where p± := k+m± are opposite parabolic subalgebras with the reductive

part k which is the stability subalgebra of g. We give a description of such decomposition of a

complex semisimple Lie algebra g in terms of crossed Dynkin diagrams and a real semisimple

Lie algebra g in terms of crossed Satake diagrams.



PARABOLIC GEOMETRIES DETERMINED BY SUBBUNDLES IN THE

TANGENT BUNDLE

Andreas Cap

University of Vienna and Erwin Schrodinger Institute of Mathematical Physics, Austria

The general theory of parabolic geometries can be used to obtain canonical Cartan connections

associated to certain types of subbundles in the tangent bundle. Among the examples covered

by this are generic distributions of rank 2 in dimension 5, rank 3 in dimension 6, and rank 4 in

dimension 7. Apart from existence of Cartan connections, this theory also provides a number

of efficient tools to study the geometry of such distributions. In my lecture, I will discuss

some applications of these tools to questions of infinitesimal automorphisms and infinitesimal

deformations of such structures.

EQUIVALENCE AND INVARIANTS OF SCALAR VARIATIONAL

PROBLEM OF HIGHER ORDER

Boris Doubrov

Belorussian State University, Minsk, Belarussia

This is the joint work with Igor Zelenko.

We consider the geometry and equivalence problem of scalar Lagrangians f(x, y, y′, . . . , y(n)) dx

of order n ≥ 3 viewed modulo contact transformations, divergence and multiplication to a non-

zero constant. We show that this equivalence problem coincides with the equivalence problem

of some subclass of rank two vector distributions.

Using the recently developed geometry of rank 2 vector distributions, we construct of the

canonical coframe naturally associated with each such variational problem. In particular, we

show that all maximally symmetric non-degenerate Lagrangians are equivalent to
(
y(n)

)2
dx. We

also discuss the correspondence between symmetries and invariants of the variational problem,

the associated rank 2 vector distribution, and the corresponding Euler–Lagrange equation.

DOUBROV INVARIANTS, TWISTOR THEORY AND EXOTIC

HOLONOMY

Maciej Dunajski

University of Cambridge, UK

I shall review the twistor approach to ODEs for which the space of solutions admits a splitting

of the tangent bundle as a symmetric tensor product of rank-two vector bundles. This condition

leads to the vanishing of relative invariants originally due to Doubrov. The special case of 4th
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order ODEs leads to exotic holonomy of Bryant. Despite this technical description it will be an

elementary talk aimed at audience with no knowledge of twistor theory, but some familiarity

with complex analysis.

REALIZABLE GROWTH VECTORS AND NORMALIZATION OF

HOMOGENEOUS APPROXIMATIONS OF AFFINE CONTROL

SYSTEMS

Svetlana Ignatovich

Kharkov National University, Ukraine

In my talk, I will discuss some problems arising in connection with the study of homogeneous

approximations of control systems.

More precisely, we consider affine control systems ẋ =
∑m

i=1 uiXi(x), where Xi(x) are real

analytic in a neighborhood of the origin. The object under consideration is a growth vector (at the

origin of such system. The first (“realizability”) problem is: for a given sequence v = (v1, . . . , vp),

to determine if there exists a system having the growth vector v.

Obviously, if two systems have the same homogeneous approximation then they have the same

growth vector. Thus, the second problem is: for a given growth vector v to describe all possible

homogeneous approximations of systems with this growth vector.

Observe that (nonsingular) changes of the control can change the homogeneous approximation

(however, they cannot change the growth vector). Hence, the third problem is: for a given growth

vector, to normalize (if it is possible) homogeneous approximations using changes of the control,

and to describe all possible normal forms.

The lecture is based on a joint work with A.Agrachev.

INVARIANTS OF VECTOR DISTRIBUTIONS OF CORANK 2

Bronislaw Jakubczyk

Stefan Banach International Mathematical Center,Warsaw, Poland

We shall discuss equivariants and invariants of vector distributions D ⊂ TM of corank 2 on

even-dimensional manifolds. We shall assign, to a given distribution D, a field of characteristic

lines in the annihilator D⊥, as well as a field of characteristic lines in D. These fields have

canonical normalizations, which yield fields of normalized characteristic 1-forms and normalized

characteristic vector fields. The equivalence problem for such distributions is reduced to equiv-

alence of tuples of differential 1-forms or tuples of vector fields. We give explicit criteria for

equivalence of generic distributions. In particular, we construct explicitely functional invariants.
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GENERIC RESULTS FOR HORIZONTAL AND SINGULAR CURVES OF

RANK-VARYING DISTRIBUTIONS

Frederic Jean

ENSTA, Paris, France

In this talk, we provide characterizations for singular curves of rank-varying distributions.

We prove that, under generic assumptions, such curves share nice properties, related to com-

putational aspects; more precisely, we show that, for a generic rank-varying distributions (with

respect to the Whitney topology), all nontrivial singular curves are of minimal order and of

corank one. As a consequence, for a Riemannian manifold (M, g) and for a generic rank-varying

distribution D of dimension at least 3, the sub-Riemannian manifold (M,D, g) does not admit

nontrivial minimizing singular curves. We also prove that, given a rank-varying distribution,

singular curves are strictly abnormal, generically with respect to the Riemannian metric. We

then show how these results can be used to derive regularity results for the distance function

and in the theory of Hamilton-Jacobi equations.

INVARIANTS OF ALMOST-PRODUCT STRUCTURES AND

GEOMETRY OF MONGE-AMPERE AND JACOBI EQUATIONS

Aleksei Kushner

Astrakhan State University and Control Sciences Institute of the Russian Academy of

Sciences, Moscow, Russia

Let N be a smooth manifold and let P = (P1, . . . , Pr) be an ordered set of real (or complex)

distributions on N , i.e.

Pi : N 3 a 7→ Pi (a) ⊂ TaN (or TaN
C).

The set P is called an almost product structure or a P-structure [1] on N if at each point

a ∈ N the tangent space TaN (for real distributions) or its complexification TaN
C (for complex

ones) splits in the direct sum of the subspaces P1 (a) , . . . , Pr (a), i.e. TaN = ⊕r
i=1Pi (a) or

TaN
C = ⊕r

i=1Pi (a).

We get the following decomposition of the de Rham complex: the C∞ (N)-modules of differ-

ential s-forms Ωs (N) split in the direct sum

(0.1) Ωs (N) = ⊕
|k|=s

Ωk (N) ,

where k is a multiindex, k =(k1, . . . , kr), ki ∈ {0, 1, . . . , ni}, ni = dimPi, |k| = k1 + · · ·+ kr,

Ωk (N) = ⊗r
i=1Ω
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and

Ωki(Pi) =
{

α ∈ Ωki (N)
∣∣∣ Xcα = 0 ∀X ∈ D(P1)⊕ · · · ⊕ D̂ (Pi)⊕ · · · ⊕D (Pr)

}
.

In case of complex almost product structures we have to consider the complexification Ωs (N)C

of the module Ωs (N).

The de Rham differential d splits in the following direct sum:

d = ⊕
|t|=1

dt,

where tj ∈ Ij= {z ∈ Z| |z| ≤ dim Pj} and

dt : Ωk(N) → Ωk+σ(N).

Theorem 1. If one of the component ti of a multi-index t is negative, then operator dt is a

C∞(N)-homomorphism.

In the other words, if one of the components ti of the multiindex t is negative, then operator

dt is tensor which acts from Ωk(N) to Ωk+t(N). Such tensors are invariant with respect to

diffeomorphisms.

Any (hyperbolic or elliptic) classical Monge-Ampère equation on a two-dimensiomnal manifold

M

(0.2) Avxx + 2Bvxy + Cvyy + D
(
vxxvyy − v2

xy

)
+ E = 0.

is an almost product structure (real or complex) on the manifold of 1-jets J1(M) (see [1]).

Jacobi equations [1]
A1 + B1

∂v1

∂x
− C1

∂v1

∂y
−D1

∂v2

∂y
+ E1

∂v2

∂x
+ F1 det Jv = 0,

A2 + B2
∂v1

∂x
− C2

∂v1

∂y
−D2

∂v2

∂y
+ E2

∂v2

∂x
+ F2 det Jv = 0,

can be regarded as almost product structures on a 4-dimensional manifold. Here

det Jv =

∣∣∣∣∣∣∣
∂v1

∂x

∂v1

∂y
∂v2

∂y

∂v2

∂x

∣∣∣∣∣∣∣
is a Jacobian and Ai, Bi, Ci, Di, Ei, Fi (i = 1, 2) are some functions on x, y, v.

We applly constructed tensors to the problem of classification of Monge-Ampère and Jacobi

equations solve the problem linearization of ones.

References

[1] Kushner A., Lychagin V., Ruvtsov V., Contact geometry of non-linear differential equations,

Cambbridge Universiry Press, Cambridge, UK, (2006) (in press).
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RIGIDITY AND FLEXIBILITY OF HOMOGENEOUS VARIETIES

Joseph Landsberg

Texas A&M University , USA

I will describe a unified perspective for studying the Schubert rigidity of cycles in compact

Hermitian symmetric spaces and the Griffiths-Harris rigidity of homogeneous subvarieties of

projective space. This is joint work with C. Robles, building on work of Griffiths and Harris,

Bryant and Hong.

REPRESENTATIONS OF GRADED LIE ALGEBRAS AND

DIFFERENTIAL EQUATIONS ON FILTERED MANIFOLDS

Tohru Morimoto

Nara Women University, Japan

If we generalize the notion of a manifold to that of a filtered manifold, the usual rôle of

tangent space is played by the nilpotent graded Lie algebra which is defined at each point of the

filtered manifold as its first order approximation. On the basis of this nilpotent approximation

we have been studying various structures and objects on filtered manifolds to develop Nilpotent

Geometry and Analysis.

In this talk we present a simple principle to associate systems of differential equations to a

representation of a Lie algebra in the framework of nilpotent analysis.

Let g =
⊕

p∈Z gp be a transitive graded Lie algebra, that is, a Lie algebra satisfying:

i) [gp, gq] ⊂ gp+q

ii) dim g− < ∞, where g− =
⊕

p<0 gp, the negative part of g

iii) (Transitivity) For i ≥ 0, xi ∈ gi, if [xi, g−] = 0, then xi = 0.

Let V =
⊕

q∈Z Vq be a graded vector space satisfying:

i) dim Vq < ∞.

ii) There exists qI such that Vq = 0 for q ≤ qI .

Let λ : g → gl(V ) be a representation of g on V such that

i) λ(gp)Vq ⊂ Vp+q.

ii) There exists q0 such that if λ(g−)xq = 0 for q > q0 then xq = 0.

We then consider the cohomology group H(g−, V ) =
⊕

p,r∈Z Hp
r (g−, V ) of the representation of

g− on V , namely the cohomology group of the cochain complex:

∂−→ Hom(∧p−1g−, V )r
∂−→ Hom(∧pg−, V )r

∂−→ Hom(∧p+1g−, V )r
∂−→
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where Hom(∧pg−, V )r is the set of all homogeneous p-cochain ω of degree r, that is, ω(ga1 ∧
· · · ∧ gap) ⊂ Va1+···+ap+r for any a1, · · · , ap < 0.

Now our assertion may be roughly stated as follows:

Principle 1. The first cohomology group H1(g−, V ) =
⊕

H1
r (g−, V ) represents a system of

differential equations and V =
⊕

Vq represents its solution space.

We will explain that it is in the framework of nilpotent analysis that the principle above is

properly and well settled. We will also give several examples.

Key words : filtered manifold, weighted jet bundle, geometric structure and differential equa-

tion on a filtered manifold.

HOW TO STRATIFY SPECIAL MULTI-FLAG AND GEOMETRICALLY

ENCODE THE EMERGING STRATA

Piotr Mormul

Warsaw University, Poland

Classical Goursat distributions have been satisfactorily understood only when visualised on

monster manifolds, as the outcomes of series of Cartan’s prolongations (started from the tangent

bundle to a 2-surface). Kumpera-Ruiz coordinates – that serve as unequalled night glasses for

Goursat flags (and are much older than the monster constructions) – are then becoming more

than natural. The KR coordinates on monsters allow the very basic Kumpera-Ruiz classes of

Goursat germs defined in [1] to be re-examined and, in a sense, rediscovered in the process of

prolongations.

Likewise, special multi-flags start to be properly understood when viewed on [even bigger

than for Goursat] Monster Manifolds, resulting from series of generalized Cartan prolongations

(gCp) described in [2]. On the other hand, it is known for some years now that special multi-

flags are best visible in so-called Extended Kumpera-Ruiz coordinates. It so happens that the

EKR coordinates are a matter of course on Monsters – just the first thing coming to mind,

given the gCp operation. Whence the question about analogues for special multi-flags of KR

classes/Goursat.

Such analogues can be defined right out of the EKR coordinates on Monsters (reversing the

order of observations made, in the course of years, for Goursat objects). These are the EKR

classes constructed in [2]. Our first objective is to present them in detail during the Workshop.

The EKR classes have been put on a solid geometric footing only later in [3], and termed

singularity classes. Discussing that footing is cardinal, albeit time-consuming, cf. [4]. Instead –
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and this is our second objective – we want to propose a super-encoding of the strata of obtained

stratification(s). It is geometry itself, seconded by Lie algebra, that (super-)encodes every single

singularity class. At present we do not know if that encoding is injective in all widths and

lengths, for all singularity classes; only believe in its being injective. This is a standing open

question.

References

[1] R.Montgomery, M. Zhitomirskii; Geometric approach to Goursat flags, Ann. Inst. H. Poincaré – AN 18 (2001),

459 – 493.

[2] P.Mormul; Multi-dimensional Cartan prolongation and special k-flags, Banach Center Publications 65 (2004),

157 – 178.

[3] ——; Geometric singularity classes for special k-flags, k ≥ 2, of arbitrary length. Singularity Theory Seminar,

S. Janeczko (ed.), Warsaw Univ. of Technology, 8 (2003), 87 – 100.

[4] ——; Special 2-flags, singularity classes and polynomial normal forms for them, Sovremennaya Matematika i

ee Prilozhenija 33 (2005), 131 – 145 (in Russian).

GL(2, R) GEOMETRIES AND ODEs

Pawel Nurowski

Warsaw University, Poland

We will discuss the description of classes of contact equivalent ordinary differential equations

of order n ≥ 5 in terms of Cartan bundle B with the base being the space of solutions and with the

structure group GL(2, R) semidirect product Rn. In case of ODEs of order 5 we give necessary

and sufficient conditions for contact equivalent classes of ODEs to define a Cartan connection

on B with values in the Lie algebra of GL(2, R) semidirect product of R5. Relations between

this geometry and recently developed SO(3) geometry in dimension 5 will also be discussed.

AVERAGE CONTROL SYSTEM AND FINSLER GEOMETRY

Jean-Baptiste Pomet

INRIA, Sophia Antipolis, France

This is the joint work with Alex Bombrun.

This talk will define an ”average control system” for system that have a conservative drift and

a very small control. The prototype is low thrust orbital transfer of earth satellites. Using

averaging to treat small perturbations of integrable systems is not new; the originality here is

that averaging can be performed before the variations of the control are decided, thus yielding

really an ”average control system”. Under some rank assumptions, that are satisfied in the case

of low thrust transfer, the new control system defines a norm in each tangent subspace. It is
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not in general twice differentiable, so that the term ”finsler geometry” is not quite appropriate,

but we shall present preliminary results.

THE CONFORMAL KILLING EQUATION ON FORMS -

PROLONGATIONS AND APPLICATIONS

Joseph Silhan

Masarryk University in Brno, Czech Republic

We construct a conformally invariant vector bundle connection such that its equation of par-

allel transport is a first order system that gives a prolongation of the conformal Killing equation

on differential forms. Parallel sections of this connection are related bijectively to solutions of the

conformal Killing equation. We construct other conformally invariant connections, also giving

prolongations of the conformal Killing equation, that bijectively relate solutions of the conformal

Killing equation on k-forms to a twisting of the conformal Killing equation on (k− `)-forms for

various integers `. These tools are used to develop a helicity raising and lowering construction

in the general setting and on conformally Einstein manifolds. (Joint work with A. Rod Gover.)

INCLUSIONS OF PARABOLIC GEOMETRIES ON A MANIFOLD

Jan Slovak

Masaryk University in Brno, Czech Republic

The lecture reports on joint research with Boris Doubrov aiming at the classification and study

of all Fefferman type constructions for parabolic geometries where the underlying manifolds do

not change.

The original Fefferman’s construction produces an S1–bundle over each manifold with an

integrable CR–structure, equipped with a conformal structure. This construction corresponds

to the embedding of Lie algebras g = su(p + 1, q + 1) into g̃ = so(2p + 2, 2q + 2). Recently,

two constructions appeared which may be interpreted as instances of such a procedure with

the property that the underlying manifold does not change. Indeed conformal structures nat-

urally associated with non-degenerate rank 2 vector distributions on 5-dimensional manifolds

were studied by Nurowski and those associated with non-degenerate rank 3 distributions on

6-dimensional manifolds by Bryant. In both cases there are natural parabolic geometries associ-

ated with these distributions, which serve as an intermediate structure between the distribution

and the conformal geometry.
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Using classical results by A. Onischchik, we classify all possibilities of such inclusions of

parabolic geometries. Apart of known examples, a new series of embeddings of 2–graded C`

geometries into 1–graded D`+1 geometries has been detected. These geometries correspond to

the generic `–dimensional distributions of codimension 1
2`(`− 1) and the Bryant’s example fits

into this series with ` = 3.

CLASSIFICATION PROBLEM AND SCALAR DIFFERENTIAL

INVARIANTS

Alexandre Vinogradov

University of Salerno, Italy

A general scheme of solution of classification and equivalence problems for geometrical struc-

tures will be presented and illustrated by some examples (plane webs, Monge-Ampere equations,

Ricci flat metrics).

CANONICAL FRAMES FOR VECTOR DISTRIBUTIONS OF RANK

TWO AND THREE

Igor Zelenko

SISSA, Trieste, Italy

This is the joint work with Boris Doubrov.

First we will describe a new rather effective procedure of symplectification for the problem

of local equivalence of non-holonomic vector distributions. The starting point of this procedure

is to lift a distribution D to a special submanifold WD of the cotangent bundle, foliated by the

characteristic curves (the abnormal extremals of the distribution D). In particular, if D is a

rank 2 distribution then the submanifolds WD is nothing but the annihilator of the square of

D, while if D is a distribution of odd rank it is the annihilator of D itself. The dynamics of

the lifting (to WD) of the distribution D along the characteristic curves (of WD) is described by

certain curves of flags of isotropic and coisotropic subspaces in a linear symplectic space. So, the

problem of equivalence of distributions can be essentially reduced to the differential geometry

of such curves: the invariants of these curves are automatically invariants of the distribution D

and the canonical frame bundles, associated with such curves, can be in many cases effectively

used for the construction of the canonical frames of the distributions D itself on certain fiber

bundles over WD. In this way we succeeded to construct the canonical frames for germs of

rank 2 distributions in Rn with n > 5 and of rank 3 distributions in R7 from certain generic
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classes. The first case generalizes the classical work of E. Cartan (1910) on rank 2 distributions

in R5. The second case is also new: the only rank 3 distributions, treated before, were rank 3

distributions in R5 (Cartan, 1910) and in R6 (N. Tanaka school and independently R. Bryant

in 70th). In all these cases the most symmetric models will be given as well.

EXACT NORMAL FORM FOR (2,5) DISTRIBUTIONS

Michail Zhitomirskii

Technion -Israel Institute of Technology, Israel

I will present a complete solution of the classical problem on reduction of generic (2, 5) dis-

tributions to a normal form whose parameters are a complete system of independent invariants.

The starting points is as follows: the Cartan invariant is a complete invariant in the classification

of 3-quasi-jets of (2, 3, 5) distributions with respect to the natural weights 1, 1, 2, 3, 3.
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ABSTRACTS OF POSTERS

RELATIVE LOCAL STABILITY OF FOR ENGEL STRUCTURES

Jiro Adachi

Hokkaido University, Sapporo, Japan

It is well known that contact structures are locally stable (the Darboux theorem).

The germ of contact structures at a point in manifolds of the same dimension are the same

up to local diffeomorphisms. The local stability of contact structures relative to submanifolds

was studied by Arnold and Givental.

This result was generalized by Zhitomirskii. He studied the local stability of contact structures

relative to subsets which may not be manifolds. On the other hand, it is known that Engel

structures are locally stable. In this talk we study relative local stability of Engel structures.

AN ESTIMATE FOR THE ENTROPY OF HAMILTONIAN FLOWS

Francesca Chittaro

SISSA, Trieste, Italy

We present a generalization to Hamiltonian flows on symplectic manifolds of the estimate

proved by Ballmann and Wojtkovski for the dynamical entropy of the geodesic flow on a compact

Riemannian manifold of nonpositive sectional curvature. Given such a Riemannian manifold M,

Ballmann and Wojtkovski proved that the dynamical entropy hµ of the geodesic flow on M

satisfies the following inequality:

hµ ≥
∫

SM
Tr

√
−K(v) dµ(v),

where v is a unit vector in TpM , if p is a point in M , SM is the unit tangent bundle on M, K(v)

is defined as K(v) = R(·, v)v, with R Riemannian curvature of M , and µ is the normalized

Liouville measure on SM .

We consider a symplectic manifold M of dimension 2n, and a compact submanifold N of M,

given by the regular level set of a Hamiltonian function on M ; moreover we consider a smooth

Lagrangian distribution on N, and we assume that the reduced curvature R̂h
z of the Hamiltonian

vector field ~h with respect to the distribution is nonpositive. Then we prove that under these

assumptions the dynamical entropy hµ of the Hamiltonian flow w.r.t. the normalized Liouville
12



measure on N satisfies:

hµ ≥
∫

N
Tr

√
−R̂h

z dµ.

EXPLICIT FORMULAS FOR BIHARMONIC SUBMANIFOLDS IN

3-DIMENSIONAL SASAKIAN SPACE FORMS

Dorel Fetcu

Technical University of Iassy, Romania

This is the joint work with Cezar Oniciuc.

Explicit formulas for biharmonic Legendre curves and biharmonic Hopf cylinders in 3-dimensional

unit sphere endowed with a certain Sasakian structure are given. Parametric equations for bi-

harmonic Hopf cylinders in Bianchi-Cartan-Vranceanu model spaces of a Sasakian space form

are obtained.

QUATERNIONIC ANALOG OF CR GEOMETRY

Hiroyuki Kamada

Miyagi University of Education, Japan and University of Southern Denmark, Odense, Denmark

I will introduce quaternionic analogues of CR and pseudohermitian structures and their strong

pseudoconvexity. Furthermore, I will explain the existence of a connection for quaternionic pseu-

dohermitian structure, which stands for an analogue of the Tanaka-Webster connection, under

certain conditions for convexity. On the other hand, O.Biquard gave the notion of quaternionic

contact structure, which is another quaternionic analogue of CR structure. I will also explain

difference between our structure and Biquard’s one. This is a joint work with Shin Nayatani.

CHARACTERISTIC VECTOR FIELDS OF DISTRIBUTIONS -

DETERMINATION THEOREMS

Woichech Krynski

Banach Mathematical Center, Poland

In our presentation we consider generic distributions D ⊂ TM of corank k ≥ 2 on manifolds M

of dimension n ≥ 5. We show that singular curves of such distribution determine the distribution

on the subset of M where they generate at least two different directions. In particular, this

happens on the whole of M if rank of D is odd. The distribution is determined by characteristic
13



vector fields and their Lie brackets of appropriate order. We characterize pairs of vector fields

of a corank 2 distribution. the case k ≥ 3 is based on [2], the case k = 2 is based on [1].

References

1. B.Jakubczyk, W.Kryski, F.Pelletier, Characteristic vector fields of corank 2 distributions, in

preparation.

2. W.Krynski, Singular curves determine generic distributions of corank at least 3, J. Dynamical

and Control Systems, Vol. 11, No. 3(2005), 375-388.

ON THE GEOMETRY OF HYPERSURFACES OF CONULLITY TWO IN

EUCLIDEAN SPACES

Velichka Milousheva

Institute of Mathematics and Informatics, Bulgarian Academy of Science

We give a geometric description of the class K0 of hypersurfaces of conullity two with involutive

geometric two-dimensional distributions proving that the integral surfaces of these distributions

are surfaces with flat normal connection, which are not developable and conversely, that any

two-dimensional surface with flat normal connection, which is not developable, generates a

hypersurface of conullity two from the class K0. In this way the hypersurfaces of conullity two

from the class K0 are in one-to-one correspondence with the two-dimensional surfaces with flat

normal connection, which are not developable.

We characterize the hypersurfaces of conullity two also as envelopes of two-parameter families

of hyperplanes, proving that a hypersurface in Euclidean space is locally a hypersurface of

conullity two if and only if it is the envelope of a two-parameter family of hyperplanes. This

geometric characterization allows us to obtain a parametrization of each hypersurface of conullity

two by a pair of a unit vector function l(u, v) and a scalar function r(u, v). We obtain a

characterization in terms of a system of partial differential equations for the geometric functions

l(u, v) and r(u, v) of two main classes of hypersurfaces of conullity two: minimal hypersurfaces

of conullity two and hypersurfaces of conullity two of umbilical type.

GENERALIZED TRIANGULAR FORMS: COORDINATE-FREE

DESCRIPTION AND BACKSTEPPING

Svyatoslav Pavlichkov
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Kharkov National University

We investigate a new class of nonlinear control systems of O.D.E. which are not feedback

linearizable in general. Our class is a generalization of the well-known feedback linearizable

systems, and moreover it is a generalization of the triangular (or pure-feedback) forms studied

before. We describe our ”generalized triangular form” in coordinate-free terms of certain nested

integrable distributions. Therefore, the problem of the feedback equivalence of a system to our

generalized triangular form is solved in the whole state space by the definition of our class.

We apply a specific backstepping procedure, and solve the problem of global controllability

for our class. Our ”backstepping algorithm”, in turn, is based on the construction a certain

discontinuous feedback law.

We propose to treat our class as a new canonical form which is a nonlinear global analog of the

Brunovsky canonical form on the one hand, and is a global and coordinate-free generalization

of the triangular form on the other hand.

DETERMINACY OF AFFINE DISTRIBUTIONS BY THEIR SINGULAR

CURVES

Marek Rupniewski

Banach Mathematical Center, Poland

e consider control-affine systems of corank grater or equal 2 defined on a smooth manifold of

dimension n, i.e., systems of the form:

q̇ = f0 + u1f1 + ... + ukfk, k < n− 1.

We prove that if k is even then a generic system of this type is determined by its singular curves

at every points belonging to some open and dense set. For odd k it may happen that there

are no singular curves passing through an open set. Still, the above kind of determinacy holds

for an open and dense subset of points through which at least one singular curve passes. In

terms of distributions we prove that every generic germ of an affine distribution is determined

by its singular curves. This is an analogue of the results obtained for linear distributions by

Montgomery, Krynski, Jakubczyk-Krynski-Pelletier. Our results reduce some problems of clas-

sification of affine distributions, e.g. classification of rank 4 affine distributions on 6-dimensional

manifold is reduced to classification of rank 2 affine distributions of special type.
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Katja Sagershnig

University of Vienna, Austria

GAUSS-BONNET INEQUALITIES AND HOPF THEOREM FOR

ZERMELOS PROBLEM

Ulisse Serres

U. Dini University, Firenze, Italy

DIFFERENTIAL INVARIANTS OF CLASSICAL GENERIC

MONGE-AMP‘ERE EQUATIONS OF HYPERBOLIC TYPE

Valery Yumaguzhin

Program Systems Institute of RAS, Pereslavl-Zalessky, Russia

A classical Monge–Ampère equation is a PDE of the form

(0.3) N(zxxzyy − z2
xy) + Azxx + Bzxy + Czyy + D = 0 ,

where the coefficients N,A, B, C,D are smooth functions of x, y, z, zx, zy.

It is well known that a most general invertible transformation of variables for equations (0.3) is

a contact transformation and contact transformations preserve the class of all classical hyperbolic

Monge–Ampére equations.

We represent some approach to calculate differential invariants of classical generic Monge–

Ampére equations of hyperbolic type w.r.t. contact transformations and solve the equivalence

problem for them. These results are obtained by A.M.Vinogradov, M.Marvan, and author in

[1].

1. Monge–Ampère equations from geometric point of view.

By M we denote the space of the variables x, y, z, zx, zy considering as independent, by U1

the standard contact form dz − zxdx− zydy on M , and by C the standard contact distribution

on M that is the distribution p 7→ Cp, where Cp is the kernel of the form U1 at p ∈ M . Recall

that a diffeomorphism f : M → M preserving C is called a contact transformation.
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Theorem 0.1. Every classical hyperbolic Monge–Ampère equation E naturally determines a pair

of 2-dimensional subdistributions

D1 : p 7→ D1
p , D2 : p 7→ D2

p

of the contact distribution C so that:

i) Cp = D1
p ⊕D2

p,

ii) D1
p and D2

p are skew-orthogonal w.r.t. the symplectic form dU1

∣∣
p
.

iii) The pair (D1,D2) reconstructs the equation E uniquely,

iv) The correspondence E → (D1,D2) is a bijection between all classical hyperbolic Monge–

Ampère equations and pairs of 2-dimensional skew-orthogonal subdistributions of C.

Thus, every hyperbolic Monge–Ampère equation E is naturally identified with the pair of 2-

dimensional, skew-orthogonal subdistributions (D1,D2) of the contact distribution C on M . In

particular, the equivalence problem for these equations with respect to contact transformations is

interpreted as the equivalence problem for corresponding pairs of 2-dimensional, skew-orthogonal

subdistributions with respect to contact transformations.

2. Projections. Let E be a hyperbolic Monge–Ampère equation. By (Di)1, i = 1, 2, we

denote the distribution generated by all vector fields X, Y ∈ Di and their commutators [X, Y ].

Then we have

dim(D1)(1) = dim(D2)(1) = 3

and the distribution

D3 = (D1)(1) ∩ (D2)(1)

is 1-dimensional and transversal to C. Therefore we get the decomposition of the tangent space

T (M) to M

(0.4) T (M) = D1 ⊕D2 ⊕D3.

This decomposition generates the projections

Pi : T (M) → Di, i = 1, 2, 3, P
(1)
j : T (M) → Dj ⊕D3, j = 1, 2 .

These projections are interpreted as vector-valued 1-forms and they are differential invariants

of E w.r.t. contact transformations.

3. Curvature forms of the distributions. By R1, R2, R1
1 and R1

2 we denote the curva-

ture forms of the distributions D1, D2, (D1)(1), and (D2)(1) respectively. Decomposition (0.4)

allows to consider these curvature forms as a vector-valued differential 2-forms on M . They are

differential invariants of E w.r.t. contact transformations.
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4. Further differential invariants. Further invariants can by obtained just by applying

various natural operations of tensor algebra, Frölicher–Nijenhuis brackets, etc. to the already

obtained differential invariants. In particular, for a generic equation E, five functionally indepen-

dent scalar differential invariants I1, . . . , I5 are obtained. Also, an invariant complete parallelism

on M , that is a collection of five invariant vector fields {Y1, . . . , Y5 } linearly independent at every

point of M , is obtained in this way.

5. The equivalence problem. The above-mentioned invariant vector fields Y1, Y2 and Y3, Y4

generate the distributions D1 and D2 respectively, that is D1 = 〈Y1, Y2〉 and D2 = 〈Y3, Y4〉. The

above-mentioned scalar invariants I1, . . . , I5 form a coordinate system in M . We say that the

expression of E =
(
〈Y1, Y2〉, 〈Y2, Y4〉

)
in this coordinate system is a canonical form of the equation

E.

Theorem 0.2. Suppose E and Ẽ are classical generic Monge–Ampère equations of hyperbolic

type. Then E and Ẽ are (locally) equivalent iff their canonical forms are the same.
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