10.1: Sequences

A sequence is a list of numbers written in a definite order. General sequence terms are denotes as follows:

$$
\begin{array}{ccccc}
\boldsymbol{n}=\mathbf{1} & a_{1} & - & \text { first } & \text { term } \\
\mathbf{n}=\mathbf{2} & a_{2} & - & \text { second } & \text { term } \\
& & \vdots & & \\
& & & & \\
& a_{n} & - & n^{\text {th }} & \text { term } \\
\mathbf{n + 1} & a_{n+1} & - & (n+1)^{\text {th }} & \text { term }
\end{array}
$$

Notice that, in general, $a_{n+1} \neq a_{n}+1$.
A sequence can be defined as a function whose domain is the set of positive numbers:

$$
\{1,2,3, \ldots\} \quad \longrightarrow \quad\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

NOTATION: $\left\{a_{1}, a_{2}, \ldots, a_{n}, a_{n+1}, \ldots\right\}, \quad\left\{a_{n}\right\}, \quad\left\{a_{n}\right\}_{n=1}^{\infty}$.
EXAMPLE 1. Write down the first few terms of the following sequences:
(a) $\left\{\frac{n+1}{n^{2}}\right\}_{n=1}^{\infty}=\left\{\begin{array}{ccc}2 & \frac{3}{4}, & \frac{5}{9}, \\ n=1 & n=3\end{array}, \quad n\right.$
(b) $\left\{\frac{(-1)^{n+1}}{2^{n}}\right\}_{n=0}^{\infty}=\left\{-1, \frac{1}{2},-\frac{1}{4}, \frac{1}{8}, \ldots\right\}$
(c) The Fibonacci sequence $\left\{f_{n}\right\}$ is defined recursively:

$$
\begin{aligned}
& f_{1}=1, \quad f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad n \geq 3 \\
& f_{1}=1 \\
& f_{2}=1 \\
& f_{3}=f_{1}+f_{2}=|t|=2 \\
& f_{4}=f_{2}+f_{3}=1+2=3 \\
& f_{5}=f_{4}+f_{3}=3+2=5
\end{aligned}
$$

EXAMPLE 2. Find a general formula for the sequence:
(a) $\left\{\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \frac{1}{11}, \ldots\right\}=\left\{\frac{1}{2 n+1}\right\}_{n=1}^{\infty}$
(b) $\left\{-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \frac{1}{25}, \ldots\right\}=\left\{\frac{(-1)^{n+1}}{n^{2}}\right\}_{n=2}^{\infty}$

$$
2^{2} 3^{2} \quad 4^{2} \quad 5^{2}
$$

and finite

DEFINITION 3. If $\lim _{n \rightarrow \infty} a_{n}$ existsthen we say that the sequence $\left\{a_{n}\right\}$ converges (or is convergent.) Otherwise, we say the sequence $\left\{a_{n}\right\}$ diverges (or is divergent.)

Graphs of two sequences with $\lim _{n \rightarrow \infty} a_{n}=L$.

EXAMPLE 4. Determine if $\left\{a_{n}\right\}_{n=1}^{\infty}$ converges or diverges. If converges, find its limit.
(a) $a_{n}=\frac{n+1}{2 n+3}$

$$
\lim _{h \rightarrow \infty} \frac{n+1}{2 n+3}=\lim _{n \rightarrow \infty} \frac{\frac{n+1}{n}}{\frac{2 n+3}{n}}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{2+\frac{3}{n}}=\frac{1}{2}
$$

convergent
(b) $a_{n}=\frac{3 n^{2}-1}{10 n+5 n^{2}}$

$$
\lim _{h \rightarrow \infty} \frac{3 n^{2}-1}{10 n+5 h^{2}}=\frac{3}{5}\left(\begin{array}{l}
\text { As limit of } \\
\text { rational function } \\
\text { convergent }
\end{array}\right)
$$

(c) $a_{n}=\arctan (2 n)$
(d)

$$
\begin{aligned}
& \text { (c) } a_{n}=\arctan (2 n) \\
& \lim _{n \rightarrow \infty} \arctan (2 n)=\lim _{m \rightarrow \infty} \arctan (m)=\frac{\pi}{2} \quad \text { convergent } \\
& \int_{2 n+4} \quad \ln \left(9+\frac{4}{n}\right)
\end{aligned}
$$

$$
a_{n}=\ln (2 n+4)-\ln n=\ln \frac{2 n+4}{n}=\ln \left(9+\frac{4}{n}\right)
$$

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \ln \left(2+\frac{4}{n}\right)=\ln \left(\lim _{n \rightarrow \infty}\left(2+\frac{4}{n}\right)\right)
$$

$$
=\ln 2 \text { convergent }
$$

(e)

$$
\begin{aligned}
& \begin{array}{l}
a_{n}=\cos \frac{\pi n}{2}, n \geqslant 1 \\
a_{1}=\cos \frac{\pi}{2}=0 \quad \\
a_{2}=\cos \pi=-1 \\
a_{3}=\cos \frac{3 \pi}{2}=0 \\
a_{4}=\cos 2 \pi=1
\end{array} \\
& a_{5}=\cos \frac{\pi n}{2}=0 \quad \begin{array}{l}
\text { Terms of the sequence oscilate } \\
\text { between - } 1 \text { and 1. Thus, the } \\
\text { sequence doesn't approach any } \\
\text { number. It is divergent. }
\end{array}
\end{aligned}
$$

Note: $b_{n}=\cos 2 \pi n \Rightarrow b_{n}=1$ for all n, ie. $\left\{b_{n}\right\}$ is constant sequence

$$
\lim _{n \rightarrow \infty} b_{n}=1 \Rightarrow\left\{b_{n}\right\} \text { is convergent }
$$

(f) $a_{n}=\frac{3+(-1)^{n}}{n^{2}}= \begin{cases}\frac{4}{n^{2}} & \text { for even } n \\ \frac{2}{n^{2}} & \text { for odd } n\end{cases}$

Squeeze Theorem

$$
\begin{aligned}
& \lim _{\lim _{n \rightarrow \infty} a_{n}=0<a_{n}=\frac{3+(-1)^{n}}{n^{2}} \leqslant \frac{4}{n^{2}} \rightarrow 0} \quad \quad_{n \rightarrow \infty} \quad \because \ddots \ldots \ldots y=\frac{4}{x^{2}}
\end{aligned}
$$

DEFINITION 5. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a number M s.t.

$$
a_{n} \leq M \quad \text { for all } n .
$$

A sequence $\left\{a_{n}\right\}$ is bounded below if there is a number m s.t.

$$
m \leq a_{n} \quad \text { for all } n
$$

If its bounded above and below, then a_{n} is a bounded sequence.

DEFINITION 6. A sequence $\left\{a_{n}\right\}$ is increasing if

$$
a_{n}<a_{n+1} \quad \text { for all } n \text {. }
$$

A sequence $\left\{a_{n}\right\}$ is decreasing if

$$
a_{n}>a_{n+1} \quad \text { for all } n
$$

MONOTONIC SEQUENCE THEOREM. Every bounded, monotonic sequence is convergent.

EXAMPLE 7. Determine whether a_{n} is increasing, decreasing or not monotonic.
(a) $a_{n}=-n^{2}, n \geqslant 1$

Way 1

$$
n<n+1
$$

$$
\begin{gathered}
n^{2}<(n+1)^{2} \\
-n^{2}>-(n+1)^{2}
\end{gathered}
$$

$-n^{2}>-(n+1)^{2} \Rightarrow a_{n}>a_{n+1} \Rightarrow\left\{a_{n}\right\}$ is decreasing

$$
\begin{array}{ll}
\text { (b) }\left\{\frac{2}{n^{2}}\right\}_{n=5}^{\infty} \\
f(x)=\frac{2}{x^{2}}, x \geqslant 5 \\
f(n)=\frac{2}{n^{2}} & a_{n}=-n^{2}=f(n), n \geqslant 1 \\
f^{\prime}(x)=-2 x<0 \text { for } x \geqslant 1 \\
f^{\prime}(x)=\left(\frac{2}{x^{2}}\right)^{\prime}=-\frac{4}{x^{3}}<0 \Rightarrow f \downarrow \Rightarrow\left\{a_{n}\right\} \text { is decreasing } \\
f \downarrow \Rightarrow\left\{\frac{2}{n^{2}}\right\}_{n=5}^{\infty} \text { is decreas. }
\end{array}
$$

(c) $\left\{(-1)^{n+1}\right\}_{n=1}^{\infty}=\{1,-1,1,-1,1,-1 \ldots\}$ osculates
not monotonic

$$
\begin{aligned}
& \text { (d) } a_{n}=\frac{\sqrt{n+1}}{5 n+3}, n \text { ff } 1,2 \ldots \\
& \text { Define } f(x)=\frac{\sqrt{x+1}}{5 x+3} \sqrt{\text { so that } x \geqslant 0} \text { fin) } f\left(a_{n}\right. \\
& f^{\prime}(x)=\frac{\frac{1}{2 \sqrt{x+1}}(5 x+3)-5 \sqrt{x+1}}{(5 x+1)^{2}}=\begin{array}{c}
\text { Common } \\
\text { denom } . ~
\end{array} \\
& f^{\prime}(x)=\frac{5 x+3-10(x+1)}{2 \sqrt{x+1}(5 x+3)^{2}}=-\frac{5 x+7}{2 \sqrt{x+1}(5 x+3)^{2}} \\
& \xrightarrow[\substack{-\frac{1}{5}}]{ } \underset{\quad}{ } \\
& f^{\prime}(x)<0 \text { for all } x \geqslant 0 \\
& \Rightarrow f(n) \downarrow \text { as } n \rightarrow \infty \\
& \left\{a_{n}\right\}_{n=0}^{\infty} \text { is decreasing }
\end{aligned}
$$

Example 8.
Consider the sequence defined by $a_{1}=1, a_{n+1}=\frac{1}{3-a_{n}}$
Find the first 5 terms of this sequence. Find the limit of the sequence.

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=\frac{1}{3-a_{1}}=\frac{1}{2} \\
& a_{3}=\frac{1}{3-\frac{1}{2}}=\frac{2}{5} \\
& a_{4}=\frac{1}{3-\frac{2}{5}}=\frac{5}{13} \\
& a_{5}=\frac{1}{3-5 / 3}=\frac{13}{34}
\end{aligned}
$$

$$
1, \frac{1}{2}, \frac{(2)}{(5)}, \frac{6}{13}, \frac{13}{34},
$$

Find L.
$\left\{a_{n}\right\}$
is bounded

$$
0<a_{n}<1
$$

\Rightarrow convergent
There exist a real number L such that

$$
L=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \frac{1}{3-a_{n}}=\frac{1}{3-L}
$$

because $a_{n} \neq 3$

$$
\begin{aligned}
L=\frac{1}{3-L} \Rightarrow & L(3-L)=1 \\
& 3 L-L^{2}=1 \\
& L^{2}-3 L+1=0 \\
L_{1,2} & =\frac{3 \pm \sqrt{3^{2}-4 \cdot 1 \cdot 1}}{2} \\
& L_{1,2}=\frac{3 \pm \sqrt{5}}{2} \quad b / c \quad 0 \leqslant L<1 \\
& =\frac{3-\sqrt{5}}{2}
\end{aligned}
$$

