a_{k} is called general(common) term of the
10.2: SERIES series

A series is a sum of sequence:

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}+\ldots
$$

For a given sequence ${ }^{1}\left\{a_{k}\right\}_{k=1}^{\infty}$ define the following: $\quad\left\{S_{n}\right\}_{n=1}^{\infty}$

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=S_{1}+a_{2}=a_{1}+a_{2} \\
& S_{3}=S_{2}+a_{3}=a_{1}+a_{2}+a_{3} \\
& S_{4}=S_{3}+a_{4}=a_{1}+a_{2}+a_{3}+a_{4} \\
& -- \\
& S_{n}=S_{n-1}+a_{n}=\sum_{k=1}^{n} a_{k}
\end{aligned}
$$

The s_{n} 's are called partial sums and they form a sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$. We want to consider the limit of $\left\{s_{n}\right\}_{n=1}^{\infty}$:

If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is convergent and $\lim _{n \rightarrow \infty} s_{n}=s$ exists as a real number, then the series $\sum_{k=1}^{n} a_{k}$ is convergent. The number s is called the sum of the series. ${ }^{2}$

If $\left\{s_{n}\right\}_{n=1}^{\infty}$ is divergent then the series $\sum_{k=1}^{\infty} a_{k}$ is divergent.
${ }^{2}$ When we write $\sum_{k=1}^{\boldsymbol{O}} a_{k}=s$ we mean that by adding sufficiently many terms of the series we can get as close as we like to the number s.

GEOMETRIC SERIES
$\left.a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots=\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n-0} \quad(a \neq 0)\right]$
Each term is obtained from the preceding one by multiplying it by the common ratio r.

$-1<r<1$

FACT: The geometric series is convergent if $|r|<1$ and its sum is
$r \geq 1, r \leq-1$

$$
\sum_{n=1}^{\infty} a r^{n-1}=\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} .
$$

If $|r| \geq 1$, the geometric series is divergent.

EXAMPLE 1. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.
(a)

$$
\begin{aligned}
\\
\sum_{n=1}^{\infty} 5 \cdot\left(\frac{2}{7}\right)^{n}=\sum_{n=1}^{\infty} 5 \cdot\left(\frac{2}{7}\right)^{n-1} \cdot \frac{2}{7}=\sum_{n=1}^{\infty} \frac{10}{7} \cdot\left(\frac{2}{7}\right)^{n-1} \\
\text { geometric } \quad r=\frac{2}{7}
\end{aligned}
$$

$$
\text { geometric } r=\frac{2}{7}, a=\frac{10}{7}
$$

Convergent b/c $|r|<1$

$$
s=\frac{a}{1-r}=\frac{10 / 7}{1-2 / 7}=\frac{10}{5}=2
$$

(b) $\sum_{n=0}^{\infty} \frac{(-4)^{3 n}}{5^{n-1}}=\sum_{n=0}^{\infty} \frac{\left(-4^{3}\right)^{n}}{5^{n} \cdot 5^{-1}}=\sum_{n=0}^{\infty} 5 \cdot\left(-\frac{64}{5}\right)^{n}$
geometric series
S) divergent
with $r=-\frac{64}{5}<-1$
(c) $1-\frac{3}{2}+\frac{9}{4}-\frac{27}{8}+\cdots=\sum_{n=0}^{\infty}\left(-\frac{3}{2}\right)^{n}$
$a=1, r=-\frac{3}{2}<-1 \Rightarrow$ divergent
geometric

$$
\begin{aligned}
& \text { (d) } \sum_{n=1}^{\infty} 4^{n+1} \cdot 9^{2-n}=\sum_{n=1}^{\infty} 4^{n+1} \cdot 9^{-(n-2)}=\sum_{n=1}^{\infty} \frac{4^{n+1}}{9^{n-2}} \\
& \left(\begin{array}{l}
2-n=-(n-2) \\
9^{2-n}=9^{-(n-2)}
\end{array}\right. \\
& =\sum_{n=1}^{\infty} \frac{4^{n-1} \cdot 4^{2}}{q^{n-1} \cdot 9^{-1}} \\
& =\sum_{n=1}^{\infty} 16 \cdot 9\left(\frac{4}{9}\right)^{n-1} \\
& =\sum_{n=1}^{\infty} 144\left(\frac{4}{9}\right)^{n-1}
\end{aligned}
$$

Geometric $\left.\begin{array}{rl}a & =144 \\ r & =\frac{4}{9}\end{array}\right\}$ convergent $b / c \quad|r|<1$

$$
s=\frac{a}{1-r}=\frac{144}{1-4 / 9}=\frac{1296}{5}
$$

EXAMPLE 2. Write the number $\overline{17}$ as a ratio of integers.

$$
\begin{array}{rlr}
\overline{17}=\frac{m}{h} \\
& \\
. \overline{17}=.17171717171717 \ldots & =.17 & .17 \\
& +.0017 & +.17 \cdot 10^{-2} \\
& +.000017= & +.17 \cdot 10^{-4} \\
& +.0000017 & +.17 \cdot 10^{-6} \\
& +\ldots & \\
& & \ldots
\end{array}
$$

Geometric series
with

$$
\begin{aligned}
& a=.17 \\
& r=10^{-2}=0.01
\end{aligned}
$$

Convergent $b / c \quad|r|<1$

$$
. \sqrt{7}=\frac{9}{1-r}=\frac{.17}{1-0.01}=\frac{17}{99}
$$

TELESCOPING SUM
Let b_{n} be a given sequence. Consider the following series:

$$
\sum_{n=1}^{\infty} \underbrace{\left.b_{n}-b_{n+1}\right)}_{a_{n}=b_{n}-b_{n}+1}
$$

Partial sum

$$
\begin{aligned}
s_{n} & =a_{1}+a_{2}+\ldots+a_{n} \\
& =b_{1}-b_{2}+b_{2}-b_{3}+b_{3}-b / 1+\ldots+b / n-1-b_{n}+b_{n}-b_{n+1} \\
& =b_{1}-b_{n+1} \quad \square \square
\end{aligned}
$$

The sum of telescoping series (if it converges)

$$
\begin{aligned}
& s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(b_{1}-b_{n+1}\right) \\
& s=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}
\end{aligned}
$$

Question: Are these series telescoping?

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} b_{n+1}-b_{n} & \sum b_{n}-b_{n-1} \\
\sum b_{n+2}-b_{n} & \sum b_{n}-b_{n+3}
\end{array}
$$

EXAMPLE 3. Determine whether the following series converges or diverges. If it is converges, find the sum. If it is diverges, explain why.
(a)

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\sin \frac{1}{n}-\sin \frac{1}{n+1}\right)=\sum_{n=1}^{\infty} b_{n}-b_{n+1} \quad \text { Telescoping } \\
& b_{n}=\sin \frac{1}{n} \quad s_{n}=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}=\sin 1-\lim _{n \rightarrow \infty} \sin \frac{1}{n+1}=\sin 1 \\
& \text { convergent and } s=\sin 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \sum_{n=1}^{\infty} \ln \frac{n+1}{n+2}=\sum_{n=1}^{\infty} \underbrace{\ln _{n}(n+1)}_{b_{n}}-\underbrace{\ln _{n}(n+2)}_{b_{n+1}} \begin{array}{c}
\text { Telescopic } \\
\text { diver }
\end{array} \\
& =b_{r} \lim _{n \rightarrow \infty} b_{n+1}=\ln 2-\lim _{n \rightarrow \infty} \ln (n+2)=-\infty
\end{aligned}
$$

(c) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

Use part. fraction decomp. $b^{b n}, b_{n+1}$

$$
\left.\begin{array}{l}
\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}=\frac{1}{n}-\frac{1}{n+1} \\
1=A(n+1)+B n \\
n=-1 \Rightarrow B==1 \\
n=0 \Rightarrow A=1
\end{array}\right\} \quad \text { Telescoping } \quad \text { }
$$

$$
S=\lim _{n \rightarrow \infty} S_{n}=b_{1}-\lim _{n \rightarrow \infty} b_{n+1}=1-\lim _{n \rightarrow \infty} \frac{1}{n+1}=1 \text { sum cone }
$$

convergent

THEOREM 4. If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$.
REMARK 5. The converse is not necessarily true.

THE TEST FOR DIVERGENCE:
If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent.

REMARK 6. If you find that $\lim _{n \rightarrow \infty} a_{n}=0$ then the Divergence Test fails and thus another test must be applied.

EXAMPLE 7. Use the test for Divergence to determine whether the series diverges.
(a) $\sum_{n=1}^{\infty} \underbrace{\frac{n^{2}}{3(n+1)(n+2)}}_{a_{n}} \quad \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n^{2}}{3(n+1)(n+2)}=\frac{1}{3} \neq 0$

The series diverges
(b) $\sum_{n=1}^{\infty} \cos \frac{\pi n}{2} \quad \lim _{n \rightarrow \infty} \cos \frac{\pi n}{2}$ DNE because

$$
n \text { is odd } \Rightarrow \cos \frac{\pi n}{2}=0
$$

n is even $\Rightarrow \cos \frac{\pi n}{2}= \pm 1$
(oscillating)
The series diverges
(c) $\sum_{n=1}^{\infty} \underbrace{\frac{(-1)^{n}}{n^{2}}}_{a_{n}}$

$$
\lim _{n \rightarrow \infty}\left(a_{n}\right)=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0
$$

\Downarrow

$$
\lim _{n \rightarrow \infty} a_{n}=0
$$

Divergence Test Fails here. Thus, to make a conclusion we have to use some other test. (See Next Sections)

