11.1: Three-dimensional Coordinate System

The three-dimensional coordinate system consists of the origin O and the coordinate axes: x-axis, y-axis, z-axis. The coordinate axes determine 3 coordinate planes: the $x y$-plane, the $x z$-plane and $y z$-plane. The coordinate planes divide space into 8 parts, called octants.

Representation of point $P(a, b, c)$ and its projections on the coordinate planes:

Example. Graph the following regions:

- Distance formula in \mathbb{R}^{3} : The distance between the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

EXAMPLE 1. Find an equation of a sphere with radius r and center

$$
\begin{aligned}
& |0 \mathrm{~A}|=r \\
& 11 \\
& \sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}=r \\
& x^{2}+y^{2}+z^{2}=r^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& |P A|=r \\
& \sqrt{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}}=r \\
& (x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}
\end{aligned}
$$

EXAMPLE 2. Show that the equation $x^{2}+y^{2}+z^{2}+x-2 y+6 z-2=0$ represents a sphere, and find its center and radius.

Comple square $(a \pm b)^{2}=a^{2} \pm 2 a b+b^{2}$

$$
\begin{aligned}
& \underbrace{\left.x^{2}+x+\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}_{\left(x+\frac{1}{2}\right)^{2}}+\underbrace{y^{2}-2 y+1^{2}-1 \cdot 1}_{(y-1)^{2}}+\underbrace{2 \cdot 3 \cdot z}_{(z+3)^{2}}+z^{2}+6 z+3^{2}-3^{2}-2 \\
& \left(x+\frac{1}{2}\right)^{2}+(y-1)^{2}+(z+3)^{2}=2+\frac{1}{4}+1+9=12+\frac{1}{4}=\frac{49}{4}
\end{aligned}
$$

We have equation of sphere centered at $\left(-\frac{1}{2}, 1,-3\right)$ with $r=\sqrt{\frac{49}{4}}=\frac{7}{2}$

