Homework Assignment 2 in Geometric Control Theory, MATH666, Fall 2013 due Oct 16, 2013

1. Let $M=S O(4)$, the group of all 4×4 orthogonal matrices with determinant equal to 1 . Fix some non-zero number α and let:

$$
A=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -\alpha \\
0 & 0 & \alpha & 0
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Consider the following control system with the state space M :

$$
\begin{equation*}
\dot{E}=E(A+u B), \quad E \in M, u \in\{-1,1\} . \tag{1}
\end{equation*}
$$

where $E \in M$ and $u \in\{-1,1\}$.
(a) Prove that system (1) is controllable if and only if $\alpha \neq \pm 1$.

Note that $\operatorname{dim} S O(4)=6$ (in general $\operatorname{dim} S O(n)=\frac{n(n-1)}{2}$). When you proceed the calculations, instead of writing down matrices I recommend you to use the following notations: let $E_{i j}$ be the 4×4 matrix such that its (i, j) th entry is equal to 1 and all other entries are equal to 0 . For example, in this notation $B=E_{32}-E_{23}$ and $A=E_{21}-E_{12}+\alpha\left(E_{43}-E_{34}\right)$. The following simple formula can be useful: $E_{i j} E_{k l}=\delta_{j k} E_{i l}$, where $\delta_{j k}$ is the Kronecker index. In other words, $E_{i j} E_{k l}=0$ if $j \neq k$ and it is equal to $E_{i l}$ if $j=k$.
(b) Will the answer of the previous item change if $u \in\{2,3\}$ (instead of $\{-1,1\}$)? Justify your answer.
(c) Assume that $\alpha= \pm 1$. Prove that for any point $E \in M$ the attainable set from E w.r.t. (1) coincides with the orbit of E w.r.t. (1) and find the dimension of every orbit.
(d) (bonus-25 points) Assume (for definiteness) that $\alpha=1$. Let $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be the standard basis in \mathbb{R}^{4}. Define the multiplication by the imaginary unit i on \mathbb{R}^{4} by setting $i e_{1}=-e_{4}, i e_{4}=e_{1}, i e_{2}=e_{3}, i e_{3}=-e_{2}$. It defines the structure of two dimensional complex vector space on $\mathbb{R}^{4}, \mathbb{R}^{4} \simeq \mathbb{C}^{2}$. Namely, the multiplication of a complex number to a vector is defined and any vector can be uniquely represented as a linear combination with complex coefficients of some two vectors (for example, of e_{1} and e_{2}). Show that a matrix D belongs to the tangent space at the identity I to the orbit (of the identity) w.r.t (1) if and only if the corresponding linear operator \widehat{D} is also linear over \mathbb{C} (i.e $D(z v)=z D(v)$ for any $v \in \mathbb{R}^{4}$ and $z \in \mathbb{C}$) and the 2×2 complex matrix D_{1} corresponding to this operator in the complex basis (e_{1}, e_{2}) satisfies: $D_{1}=-\bar{D}_{1}{ }^{T}$ (where ${ }^{-}$stands for the complex conjugation).
Remark: In other words, this item shows that in the case $\alpha=1$ the orbit of the identity is the unitary group $U_{2}(\mathbb{C})=U_{4}(\mathbb{R})$. Similar conclusion (with slightly modified complex structure on \mathbb{R}^{4}) can be done for $\alpha=-1$.

