Homework Assignment 3 in Geometric Control Theory, MATH666

due to Oct 21, 2011 $\,$

Problem 1 Consider the control of angular momentum M of a rigid body with a fixed point by two torques in the direction of two axis of inertia. It is described by the following control system:

$$\dot{M} = M \times A^{-1}M + u_1 l_1 + u_2 l_2, \tag{1}$$

where A is the inertia operator of the body, l_1 and l_2 are two torques parallel to the inertia axis $\mathbb{R}e_1$, $\mathbb{R}e_2$, respectively, and both controls u_1 and u_2 take values in the set $\{-1, 1\}$. Under what conditions on the principle moments of inertia , i.e. the eigenvalues of the inertia operator A, the system (1) is controllable? Prove your answer.

Problem 2

a) Let M = SO(3), the group of all 3×3 orthogonal matrices with determinant equal to 1. Consider the following control system with the state space M:

$$\dot{E} = E \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & u \\ 0 & -u & 0 \end{pmatrix},$$
(2)

where $E \in M$ and $u \in \{-1, 1\}$. Is this system controllable?

b) Investigate the same question if $u \in \{1, 2\}$ (i.e. if we replace the control space $\{-1, 1\}$ by $\{1, 2\}$).

Remark 1. (The geometric interpretation of Problem 2): Equation (2) is nothing but the equation for the moving Frenet frame for a curve in \mathbb{R}^3 with the curvature 1 and the torsion u (the frame consist of the columns of the matrix E). Then the problem 2 can be reformulated as follows: given two orthonormal frames E_0 and E_1 (defining the same orientation in \mathbb{R}^3) can we find a concatenation of curves in \mathbb{R}^3 with the curvature 1 and the torsion 1 or -1 such that the Frenet frame in the initial point is equal to E_0 and the Frenet frame at the end point is equal to E_1 (we assume that at the time moments of switching of control, the Frenet frames is continuous). Shortly speaking we control the Frenet frame by controlling the torsion.