Homework Assignment 3 in Geometric Control Theory, MATH666

 due to Oct 21, 2011Problem 1 Consider the control of angular momentum M of a rigid body with a fixed point by two torques in the direction of two axis of inertia. It is described by the following control system:

$$
\begin{equation*}
\dot{M}=M \times A^{-1} M+u_{1} l_{1}+u_{2} l_{2}, \tag{1}
\end{equation*}
$$

where A is the inertia operator of the body, l_{1} and l_{2} are two torques parallel to the inertia axis $\mathbb{R} e_{1}, \mathbb{R} e_{2}$, respectively, and both controls u_{1} and u_{2} take values in the set $\{-1,1\}$. Under what conditions on the principle moments of inertia, i.e. the eigenvalues of the inertia operator A, the system (1) is controllable? Prove your answer.

Problem 2

a) Let $M=S O(3)$, the group of all 3×3 orthogonal matrices with determinant equal to 1 . Consider the following control system with the state space M :

$$
\dot{E}=E\left(\begin{array}{ccc}
0 & -1 & 0 \tag{2}\\
1 & 0 & u \\
0 & -u & 0
\end{array}\right),
$$

where $E \in M$ and $u \in\{-1,1\}$. Is this system controllable?
b) Investigate the same question if $u \in\{1,2\}$ (i.e. if we replace the control space $\{-1,1\}$ by $\{1,2\}$).

Remark 1. (The geometric interpretation of Problem 2): Equation (2) is nothing but the equation for the moving Frenet frame for a curve in \mathbb{R}^{3} with the curvature 1 and the torsion u (the frame consist of the columns of the matrix E). Then the problem 2 can be reformulated as follows: given two orthonormal frames E_{0} and E_{1} (defining the same orientation in \mathbb{R}^{3}) can we find a concatenation of curves in \mathbb{R}^{3} with the curvature 1 and the torsion 1 or -1 such that the Frenet frame in the initial point is equal to E_{0} and the Frenet frame at the end point is equal to E_{1} (we assume that at the time moments of switching of control, the Frenet frames is continuous). Shortly speaking we control the Frenet frame by controlling the torsion.

